Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proteomics ; 20(5-6): e1800420, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31385433

RESUMO

All organisms age, but the extent to which all organisms age the same way remains a fundamental unanswered question in biology. Across species, it is now clear that at least some aspects of aging are highly conserved and are perhaps universal, but other mechanisms of aging are private to individual species or sets of closely related species. Within the same species, however, it has generally been assumed that the molecular mechanisms of aging are largely invariant from one individual to the next. With the development of new tools for studying aging at the individual cell level in budding yeast, recent data has called this assumption into question. There is emerging evidence that individual yeast mother cells may undergo fundamentally different trajectories of aging. Individual trajectories of aging are difficult to study by traditional population level assays, but through the application of systems biology approaches combined with novel microfluidic technologies, it is now possible to observe and study these phenomena in real time. Understanding the spectrum of mechanisms that determine how different individuals age is a necessary step toward the goal of personalized geroscience, where healthy longevity is optimized for each individual.


Assuntos
Envelhecimento , Senescência Celular , Saccharomyces cerevisiae/citologia , Biologia de Sistemas/métodos , Animais , Humanos , Longevidade , Técnicas Analíticas Microfluídicas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Especificidade da Espécie
2.
PLoS Genet ; 13(3): e1006695, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28355222

RESUMO

Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidade/genética , Oxigenases/genética , Transaldolase/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxigenases/biossíntese , Inanição , Transaldolase/antagonistas & inibidores , Resposta a Proteínas não Dobradas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Bioinformatics ; 34(1): 88-96, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968663

RESUMO

Motivation: Although high-content image cytometry is becoming increasingly routine, processing the large amount of data acquired during time-lapse experiments remains a challenge. The majority of approaches for automated single-cell segmentation focus on flat, uniform fields of view covered with a single layer of cells. In the increasingly popular microfluidic devices that trap individual cells for long term imaging, these conditions are not met. Consequently, most techniques for segmentation perform poorly. Although potentially constraining the generalizability of software, incorporating information about the microfluidic features, flow of media and the morphology of the cells can substantially improve performance. Results: Here we present DISCO (Data Informed Segmentation of Cell Objects), a framework for using the physical constraints imposed by microfluidic traps, the shape based morphological constraints of budding yeast and temporal information about cell growth and motion to allow tracking and segmentation of cells in microfluidic devices. Using manually curated datasets, we demonstrate substantial improvements in both tracking and segmentation when compared with existing software. Availability and implementation: The MATLAB code for the algorithm and for measuring performance is available at https://github.com/pswain/segmentation-software and the test images and the curated ground-truth results used for comparing the algorithms are available at http://datashare.is.ed.ac.uk/handle/10283/2002. Contact: mcrane2@uw.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proliferação de Células , Citometria por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Saccharomycetales/fisiologia , Saccharomycetales/citologia , Análise de Célula Única/métodos , Software
4.
PLoS Comput Biol ; 11(4): e1004194, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25910032

RESUMO

Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision the broad utility of the framework for diverse problems across different length scales and imaging methods.


Assuntos
Caenorhabditis elegans/citologia , Rastreamento de Células/métodos , Cabeça/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Animais , Aprendizado de Máquina , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Neurosci ; 34(38): 12678-89, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232106

RESUMO

Synapses are surrounded by a layer of extracellular matrix (ECM), which is instrumental for their development and maintenance. ECM composition is dynamically controlled by proteases, but how the precise composition of the ECM affects synaptic morphology is largely unknown. Through an unbiased forward genetic screen, we found that Caenorhabditis elegans gon-1, a conserved extracellular ADAMTS protease, is required for maintaining proper synaptic morphology at the neuromuscular junction. In gon-1 mutants, once synapse formation is complete, motor neuron presynaptic varicosities develop into large bulbous protrusions that contain synaptic vesicles and active zone proteins. A concomitant overgrowth of postsynaptic muscle membrane is found in close apposition to presynaptic axonal protrusions. Mutations in the muscle-specific, actin-severing protein cofilin (unc-60) suppress the axon phenotype, suggesting that muscle outgrowth is necessary for presynaptic protrusions. gon-1 mutants can also be suppressed by loss of the ECM components collagen IV (EMB-9) and fibulin (FBL-1). We propose that GON-1 regulates a developmental switch out of an initial "pro-growth" phase during which muscle arms grow out and form synapses with motor neuron axons. We postulate that this switch involves degradation or reorganization of collagen IV (EMB-9), whereas FBL-1 opposes GON-1 by stabilizing EMB-9. Our results describe a mechanism for regulating synaptic ECM composition and reveal the importance of precise ECM composition for neuronal morphology and synapse integrity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Metaloendopeptidases/genética , Junção Neuromuscular/crescimento & desenvolvimento , Sinapses/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/genética , Colágeno Tipo IV/genética , Metaloendopeptidases/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo
6.
Nat Methods ; 9(10): 977-80, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22902935

RESUMO

Morphometric studies in multicellular organisms are generally performed manually because of the complexity of multidimensional features and lack of appropriate tools for handling these organisms. Here we present an integrated system that identifies and sorts Caenorhabditis elegans mutants with altered subcellular traits in real time without human intervention. We performed self-directed screens 100 times faster than manual screens and identified both genes and phenotypic classes involved in synapse formation.


Assuntos
Caenorhabditis elegans/genética , Neurogênese , Sinapses/fisiologia , Animais , Expressão Gênica , Mutação
7.
Nat Methods ; 8(2): 153-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240278

RESUMO

The ability to optically excite or silence specific cells using optogenetics has become a powerful tool to interrogate the nervous system. Optogenetic experiments in small organisms have mostly been performed using whole-field illumination and genetic targeting, but these strategies do not always provide adequate cellular specificity. Targeted illumination can be a valuable alternative but it has only been shown in motionless animals without the ability to observe behavior output. We present a real-time, multimodal illumination technology that allows both tracking and recording the behavior of freely moving C. elegans while stimulating specific cells that express channelrhodopsin-2 or MAC. We used this system to optically manipulate nodes in the C. elegans touch circuit and study the roles of sensory and command neurons and the ultimate behavioral output. This technology enhances our ability to control, alter, observe and investigate how neurons, muscles and circuits ultimately produce behavior in animals using optogenetics.


Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , Músculos/fisiologia , Neurônios/fisiologia , Fenômenos Ópticos , Fotobiologia/métodos , Percepção Visual , Animais , Fatores de Tempo
8.
Nat Methods ; 5(7): 637-43, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18568029

RESUMO

Microscopy, phenotyping and visual screens are frequently applied to model organisms in combination with genetics. Although widely used, these techniques for multicellular organisms have mostly remained manual and low-throughput. Here we report the complete automation of sample handling, high-resolution microscopy, phenotyping and sorting of Caenorhabditis elegans. The engineered microfluidic system, coupled with customized software, has enabled high-throughput, high-resolution microscopy and sorting with no human intervention and may be combined with any microscopy setup. The microchip is capable of robust local temperature control, self-regulated sample-loading and automatic sample-positioning, while the integrated software performs imaging and classification of worms based on morphological and intensity features. We demonstrate the ability to perform sensitive and quantitative screens based on cellular and subcellular phenotypes with over 95% accuracy per round and a rate of several hundred worms per hour. Screening time can be reduced by orders of magnitude; moreover, screening is completely automated.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Técnicas Analíticas Microfluídicas/métodos , Animais , Animais Geneticamente Modificados , Desenho de Equipamento , Perfilação da Expressão Gênica/métodos , Genes de Helmintos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/estatística & dados numéricos , Microfluídica , Microscopia/métodos , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Proteínas Recombinantes/genética , Software , Sinapses/metabolismo
9.
Lab Chip ; 10(12): 1509-17, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20383347

RESUMO

This paper reviews the technologies that have been invented in the last few years on high-throughput phenotyping, imaging, screening, and related techniques using microfluidics. The review focuses on the technical challenges and how microfluidics can help to solve these existing problems, specifically discussing the applications of microfluidics to multicellular model organisms. The challenges facing this field include handling multicellular organisms in an efficient manner, controlling the microenvironment and precise manipulation of the local conditions to allow the phenotyping, screening, and imaging of the small animals. Not only does microfluidics have the proper length scale for manipulating these biological entities, but automation has also been demonstrated with these systems, and more importantly the ability to deliver stimuli or alter biophysical/biochemical conditions to the biological entities with good spatial and temporal controls. In addition, integration with and interfacing to other hardware/software allows quantitative approaches. We include several successful examples of microfluidics solving these high-throughput problems. The paper also highlights other applications that can be developed in the future.


Assuntos
Células/metabolismo , Eucariotos/citologia , Eucariotos/metabolismo , Técnicas Analíticas Microfluídicas , Imagem Molecular/instrumentação , Fenótipo , Animais , Células/citologia , Ensaios de Triagem em Larga Escala , Microfluídica
10.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990592

RESUMO

Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here, we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells, we observe drastic changes in organellar volume, leading to crowding on the micrometer scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells.


Assuntos
Saccharomyces cerevisiae/fisiologia , Senescência Celular , Concentração de Íons de Hidrogênio , Organelas , Densidade Demográfica , Análise de Célula Única
11.
Geroscience ; 42(2): 749-764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975050

RESUMO

The loss of vacuolar/lysosomal acidity is an early event during aging that has been linked to mitochondrial dysfunction. However, it is unclear how loss of vacuolar acidity results in age-related dysfunction. Through unbiased genetic screens, we determined that increased iron uptake can suppress the mitochondrial respiratory deficiency phenotype of yeast vma mutants, which have lost vacuolar acidity due to genetic disruption of the vacuolar ATPase proton pump. Yeast vma mutants exhibited nuclear localization of Aft1, which turns on the iron regulon in response to iron-sulfur cluster (ISC) deficiency. This led us to find that loss of vacuolar acidity with age in wild-type yeast causes ISC defects and a DNA damage response. Using microfluidics to investigate aging at the single-cell level, we observe grossly divergent trajectories of iron homeostasis within an isogenic and environmentally homogeneous population. One subpopulation of cells fails to mount the expected compensatory iron regulon gene expression program, and suffers progressively severe ISC deficiency with little to no activation of the iron regulon. In contrast, other cells show robust iron regulon activity with limited ISC deficiency, which allows extended passage and survival through a period of genomic instability during aging. These divergent trajectories suggest that iron regulation and ISC homeostasis represent a possible target for aging interventions.


Assuntos
Homeostase , Ferro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ferro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Enxofre
12.
Lab Chip ; 9(1): 38-40, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19209332

RESUMO

Most visual screens based on fluorescent markers are currently limited in throughput and accuracy. Here we present the first genetic screen of a mutagenized population of C. elegans in a microfluidic device. Animal handling streamlined by a microfluidic device and intuitive control software enabled the identification of novel mutants and a large screening speed.


Assuntos
Caenorhabditis elegans/genética , Computadores , Microfluídica , Animais , Software
13.
Sci Rep ; 9(1): 9192, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235724

RESUMO

Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.


Assuntos
Regiões 5' não Traduzidas , Caenorhabditis elegans/genética , Melhoramento Genético , Íntrons , Animais , Animais Geneticamente Modificados/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Proteína Vermelha Fluorescente
14.
Transl Med Aging ; 3: 52-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31511839

RESUMO

Recently, microfluidic technologies have been developed to allow higher throughput collection of yeast replicative lifespan data. Adoption of these devices has been limited, in part, due to the high cost of the motorized microscopy instrumentation from mainline manufacturers. Inspired by recent development of open source microscopy hardware and software, we developed minimal-cost hardware attachments to provide long-term focus stabilization for lower-cost microscopes and open source software to manage concurrent time-lapse image acquisition from multiple microscopes. We hope that these tools will help spur the wider adoption of microfluidic technologies for the study of aging in yeast.

15.
Elife ; 82019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714209

RESUMO

Genome instability is a hallmark of aging and contributes to age-related disorders such as cancer and Alzheimer's disease. The accumulation of DNA damage during aging has been linked to altered cell cycle dynamics and the failure of cell cycle checkpoints. Here, we use single cell imaging to study the consequences of increased genomic instability during aging in budding yeast and identify striking age-associated genome missegregation events. This breakdown in mitotic fidelity results from the age-related activation of the DNA damage checkpoint and the resulting degradation of histone proteins. Disrupting the ability of cells to degrade histones in response to DNA damage increases replicative lifespan and reduces genomic missegregations. We present several lines of evidence supporting a model of antagonistic pleiotropy in the DNA damage response where histone degradation, and limited histone transcription are beneficial to respond rapidly to damage but reduce lifespan and genomic stability in the long term.


Assuntos
Envelhecimento/metabolismo , Cromatina/metabolismo , Dano ao DNA , Homeostase , Mitose , Pontos de Checagem do Ciclo Celular , Humanos
16.
Elife ; 82019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31157618

RESUMO

Nuclear transport is facilitated by the Nuclear Pore Complex (NPC) and is essential for life in eukaryotes. The NPC is a long-lived and exceptionally large structure. We asked whether NPC quality control is compromised in aging mitotic cells. Our images of single yeast cells during aging, show that the abundance of several NPC components and NPC assembly factors decreases. Additionally, the single-cell life histories reveal that cells that better maintain those components are longer lived. The presence of herniations at the nuclear envelope of aged cells suggests that misassembled NPCs are accumulated in aged cells. Aged cells show decreased dynamics of transcription factor shuttling and increased nuclear compartmentalization. These functional changes are likely caused by the presence of misassembled NPCs, as we find that two NPC assembly mutants show similar transport phenotypes as aged cells. We conclude that NPC interphase assembly is a major challenge for aging mitotic cells.


Assuntos
Mitose , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Mutação/genética , Membrana Nuclear/metabolismo , Estresse Oxidativo , Permeabilidade , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
17.
Transl Med Aging ; 3: 104-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32190787

RESUMO

An increase in cell size with age is a characteristic feature of replicative aging in budding yeast. Deletion of the gene encoding Whi5 results in shortened duration of G1 and reduced cell size, and has been previously suggested to increase replicative lifespan. Upon careful analysis of multiple independently derived haploid and homozygous diploid whi5Δ mutants, we find no effect on lifespan, but we do confirm the reduction in cell size. We suggest that instead of antagonizing lifespan, the elongated G1 phase of the cell cycle during aging may actually play an important role in allowing aged cells time to repair accumulating DNA damage.

18.
Curr Opin Syst Biol ; 8: 25-31, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552673

RESUMO

Aging is a fundamental aspect of life, yet also one of the most confounding. In individual cells, aging results in a progressive decline which affects all organelles and reduces a cell's ability to maintain homeostasis. Because of the interconnected nature of cellular systems, the failure of even a single organelle can have cascading effects. We are just beginning to understand the dramatic physiological changes that occur during aging. Because most aging research has focused on population dynamics, or differences between wild-type and mutant populations, single-cell behavior has been largely overlooked. An open question is whether aging cells are defined by predictable sequences of physiological changes, or whether they proceed along divergent aging trajectories defined by whichever system begins to fail first. Can aging be best characterized by a cell-cycle like model with stereotyped states all cells progress through, or a Waddington landscape with divergent trajectories? Here we present work on understanding the changing physiological states of aging cells, why it will impact systems and synthetic biologists, and how the systems community can contribute significantly to the study of aging.

19.
Elife ; 72018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30299256

RESUMO

Cells constantly adapt to environmental fluctuations. These physiological changes require time and therefore cause a lag phase during which the cells do not function optimally. Interestingly, past exposure to an environmental condition can shorten the time needed to adapt when the condition re-occurs, even in daughter cells that never directly encountered the initial condition. Here, we use the molecular toolbox of Saccharomyces cerevisiae to systematically unravel the molecular mechanism underlying such history-dependent behavior in transitions between glucose and maltose. In contrast to previous hypotheses, the behavior does not depend on persistence of proteins involved in metabolism of a specific sugar. Instead, presence of glucose induces a gradual decline in the cells' ability to activate respiration, which is needed to metabolize alternative carbon sources. These results reveal how trans-generational transitions in central carbon metabolism generate history-dependent behavior in yeast, and provide a mechanistic framework for similar phenomena in other cell types.


Assuntos
Carbono/farmacologia , Fermentação , Saccharomyces cerevisiae/metabolismo , Aerobiose/efeitos dos fármacos , Carboidratos/farmacologia , Contagem de Células , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fermentação/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Fúngicos , Mutação/genética , Consumo de Oxigênio/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
20.
Mech Ageing Dev ; 161(Pt B): 262-269, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27015709

RESUMO

The budding yeast Saccharomyces cerevisiae has been used as a model organism for the study of aging for over 50 years. In this time, the canonical aging experiment-replicative lifespan analysis by manual microdissection-has remained essentially unchanged. Recently, microfluidic technologies have been developed that may be able to substitute for this time- and labor-intensive procedure. These technologies also allow cell physiology to be observed throughout the entire lifetime. Here, we review these devices, novel observations they have made possible, and some of the current system limitations.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA