Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 474(7351): 399-402, 2011 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-21602826

RESUMO

The differentiation of patient-derived induced pluripotent stem cells (iPSCs) to committed fates such as neurons, muscle and liver is a powerful approach for understanding key parameters of human development and disease. Whether undifferentiated iPSCs themselves can be used to probe disease mechanisms is uncertain. Dyskeratosis congenita is characterized by defective maintenance of blood, pulmonary tissue and epidermal tissues and is caused by mutations in genes controlling telomere homeostasis. Short telomeres, a hallmark of dyskeratosis congenita, impair tissue stem cell function in mouse models, indicating that a tissue stem cell defect may underlie the pathophysiology of dyskeratosis congenita. Here we show that even in the undifferentiated state, iPSCs from dyskeratosis congenita patients harbour the precise biochemical defects characteristic of each form of the disease and that the magnitude of the telomere maintenance defect in iPSCs correlates with clinical severity. In iPSCs from patients with heterozygous mutations in TERT, the telomerase reverse transcriptase, a 50% reduction in telomerase levels blunts the natural telomere elongation that accompanies reprogramming. In contrast, mutation of dyskerin (DKC1) in X-linked dyskeratosis congenita severely impairs telomerase activity by blocking telomerase assembly and disrupts telomere elongation during reprogramming. In iPSCs from a form of dyskeratosis congenita caused by mutations in TCAB1 (also known as WRAP53), telomerase catalytic activity is unperturbed, yet the ability of telomerase to lengthen telomeres is abrogated, because telomerase mislocalizes from Cajal bodies to nucleoli within the iPSCs. Extended culture of DKC1-mutant iPSCs leads to progressive telomere shortening and eventual loss of self-renewal, indicating that a similar process occurs in tissue stem cells in dyskeratosis congenita patients. These findings in iPSCs from dyskeratosis congenita patients reveal that undifferentiated iPSCs accurately recapitulate features of a human stem cell disease and may serve as a cell-culture-based system for the development of targeted therapeutics.


Assuntos
Disceratose Congênita/genética , Disceratose Congênita/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Telômero/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Reprogramação Celular , Fibroblastos , Regulação da Expressão Gênica , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/enzimologia , Telômero/genética , Telômero/metabolismo
2.
Nucleic Acids Res ; 41(19): 8969-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23901009

RESUMO

Mutations in the gene for telomerase reverse transcriptase (hTERT) are associated with diseases including dyskeratosis congenita, aplastic anemia, pulmonary fibrosis and cancer. Understanding the molecular basis of these telomerase-associated diseases requires dependable quantitative measurements of telomerase enzyme activity. Furthermore, recent findings that the human POT1-TPP1 chromosome end-binding protein complex stimulates telomerase activity and processivity provide incentive for testing variant telomerases in the presence of these factors. In the present work, we compare multiple disease-associated hTERT variants reconstituted with the RNA subunit hTR in two systems (rabbit reticulocyte lysates and human cell lines) with respect to telomerase enzymatic activity, processivity and activation by telomere proteins. Surprisingly, many of the previously reported disease-associated hTERT alleles give near-normal telomerase enzyme activity. It is possible that a small deficit in telomerase activity is sufficient to cause telomere shortening over many years. Alternatively, mutations may perturb functions such as the recruitment of telomerase to telomeres, which are essential in vivo but not revealed by simple enzyme assays.


Assuntos
Telomerase/genética , Telomerase/metabolismo , Linhagem Celular , Humanos , Mutação , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo
3.
RNA ; 13(3): 404-13, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17242307

RESUMO

The methylation of the ribose 2'-OH of RNA occurs widely in nature and in all stable RNAs and occurs at five positions in yeast tRNA. 2'-O-methylation of tRNA at position 4 is interesting because it occurs in the acceptor stem (which is normally undermodified), it is the only 2'-O-methylation that occurs in the middle of a duplex region in tRNA, the modification is conserved in eukaryotes, and the features of the tRNA necessary for substrate recognition are poorly defined. We show here that Saccharomyces cerevisiae ORF YOL125w (TRM13) is necessary and sufficient for 2'-O-methylation at position 4 of yeast tRNA. Biochemical analysis of the S. cerevisiae proteome shows that Trm13 copurifies with 2'-O-methylation activity, using tRNAGlyGCC as a substrate, and extracts made from a trm13-Delta strain have undetectable levels of this activity. Trm13 is necessary for activity in vivo because tRNAs isolated from a trm13-Delta strain lack the corresponding 2'-O-methylated residue for each of the three known tRNAs with this modification. Trm13 is sufficient for 2'-O-methylation at position 4 in vitro since yeast Trm13 protein purified after expression in Escherichia coli has the same activity as that produced in yeast. Trm13 protein binds substrates tRNAHis and tRNAGlyGCC with KD values of 85+/-8 and 100+/-14 nM, respectively, and has a KM for tRNAHis of 10 nM, but binds nonsubstrate tRNAs very poorly (KD>1 microM). Trm13 is conserved in eukaryotes, but there is no sequence similarity between Trm13 and other known methyltransferases.


Assuntos
RNA Fúngico/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Metilação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Fúngico/química , Aminoacil-RNA de Transferência/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , tRNA Metiltransferases/química , tRNA Metiltransferases/genética
4.
RNA ; 8(7): 933-47, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12166648

RESUMO

Ribonuclease P (RNase P) is a ribonucleoprotein that requires magnesium ions to catalyze the 5' maturation of transfer RNA. To identify interactions essential for catalysis, the properties of RNase P containing single sulfur substitutions for nonbridging phosphodiester oxygens in helix P4 of Bacillus subtilis RNase P were analyzed using transient kinetic experiments. Sulfur substitution at the nonbridging oxygens of the phosphodiester bond of nucleotide U51 only modestly affects catalysis. However, phosphorothioate substitutions at A49 and G50 decrease the cleavage rate constant enormously (300-4,000-fold for P RNA and 500-15,000-fold for RNase P holoenzyme) in magnesium without affecting the affinity of pre-tRNA(Asp), highlighting the importance of this region for catalysis. Furthermore, addition of manganese enhances pre-tRNA cleavage catalyzed by B. subtilis RNase P RNA containing an Sp phosphorothioate modification at A49, as observed for Escherichia coli P RNA [Christian et al., RNA, 2000, 6:511-519], suggesting that an essential metal ion may be coordinated at this site. In contrast, no manganese rescue is observed for the A49 Sp phosphorothioate modification in RNase P holoenzyme. These differential manganese rescue effects, along with affinity cleavage, suggest that the protein component may interact with a metal ion bound near A49 in helix P4 of P RNA.


Assuntos
Bacillus subtilis/enzimologia , Endorribonucleases/metabolismo , Proteínas de Escherichia coli , RNA Bacteriano/metabolismo , RNA Catalítico/metabolismo , Bacillus subtilis/genética , Sequência de Bases , Domínio Catalítico/genética , Endorribonucleases/química , Endorribonucleases/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Cinética , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Catalítico/química , RNA Catalítico/genética , Ribonuclease P , Tionucleotídeos/química
5.
Virology ; 306(2): 210-8, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12642094

RESUMO

Thermodynamic modeling of Ebola viral RNA predicts the formation of RNA stem-loop structures at the 3' and 5' termini and panhandle structures between the termini of the genomic (or antigenomic) RNAs. Sequence analysis showed a high degree of identity among Ebola Zaire, Sudan, Reston, and Cote d'Ivoire subtype viruses in their 3' and 5' termini (18 nucleotides in length) and within a second region (internal by approximately 20 nucleotides). While base pairing of the two conserved regions could lead to the formation of the base of the putative stem-loop or panhandle structures, the intervening sequence variation altered the predictions for the rest of the structures. Using an in vivo minigenome replication system, we engineered mutations designed to disrupt potential base pairing in the viral RNA termini. Analysis of these variants by screening for enhanced green fluorescent protein reporter expression and by quantitation of minigenomic RNA levels demonstrated that the upper portions of the putative panhandle and 3' genomic structures can be destabilized without affecting virus replication.


Assuntos
Ebolavirus/genética , Ebolavirus/fisiologia , RNA Viral/química , RNA Viral/genética , Sequência de Bases , Linhagem Celular , Engenharia Genética , Genoma Viral , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Termodinâmica , Replicação Viral
6.
J Virol ; 78(8): 4330-41, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047846

RESUMO

The largest outbreak on record of Ebola hemorrhagic fever (EHF) occurred in Uganda from August 2000 to January 2001. The outbreak was centered in the Gulu district of northern Uganda, with secondary transmission to other districts. After the initial diagnosis of Sudan ebolavirus by the National Institute for Virology in Johannesburg, South Africa, a temporary diagnostic laboratory was established within the Gulu district at St. Mary's Lacor Hospital. The laboratory used antigen capture and reverse transcription-PCR (RT-PCR) to diagnose Sudan ebolavirus infection in suspect patients. The RT-PCR and antigen-capture diagnostic assays proved very effective for detecting ebolavirus in patient serum, plasma, and whole blood. In samples collected very early in the course of infection, the RT-PCR assay could detect ebolavirus 24 to 48 h prior to detection by antigen capture. More than 1,000 blood samples were collected, with multiple samples obtained from many patients throughout the course of infection. Real-time quantitative RT-PCR was used to determine the viral load in multiple samples from patients with fatal and nonfatal cases, and these data were correlated with the disease outcome. RNA copy levels in patients who died averaged 2 log(10) higher than those in patients who survived. Using clinical material from multiple EHF patients, we sequenced the variable region of the glycoprotein. This Sudan ebolavirus strain was not derived from either the earlier Boniface (1976) or Maleo (1979) strain, but it shares a common ancestor with both. Furthermore, both sequence and epidemiologic data are consistent with the outbreak having originated from a single introduction into the human population.


Assuntos
Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Antígenos Virais/sangue , Sequência de Bases , DNA Viral/genética , Surtos de Doenças , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/virologia , Humanos , Epidemiologia Molecular , Prognóstico , RNA Viral/sangue , RNA Viral/genética , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , Sensibilidade e Especificidade , Uganda/epidemiologia , Proteínas Virais/genética , Viremia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA