Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 318(2): H212-H222, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834838

RESUMO

The cardiac potassium IKs current is carried by a channel complex formed from α-subunits encoded by KCNQ1 and ß-subunits encoded by KCNE1. Deleterious mutations in either gene are associated with hereditary long QT syndrome. Interactions between the transmembrane domains of the α- and ß-subunits determine the activation kinetics of IKs. A physical and functional interaction between COOH termini of the proteins has also been identified that impacts deactivation rate and voltage dependence of activation. We sought to explore the specific physical interactions between the COOH termini of the subunits that confer such control. Hydrogen/deuterium exchange coupled to mass spectrometry narrowed down the region of interaction to KCNQ1 residues 352-374 and KCNE1 residues 70-81, and provided evidence of secondary structure within these segments. Key mutations of residues in these regions tended to shift voltage dependence of activation toward more depolarizing voltages. Double-mutant cycle analysis then revealed energetic coupling between KCNQ1-I368 and KCNE1-D76 during channel activation. Our results suggest that the proximal COOH-terminal regions of KCNQ1 and KCNE1 participate in a physical and functional interaction during channel opening that is sensitive to perturbation and may explain the clustering of long QT mutations in the region.NEW & NOTEWORTHY Interacting ion channel subunits KCNQ1 and KCNE1 have received intense investigation due to their critical importance to human cardiovascular health. This work uses physical (hydrogen/deuterium exchange with mass spectrometry) and functional (double-mutant cycle analyses) studies to elucidate precise and important areas of interaction between the two proteins in an area that has eluded structural definition of the complex. It highlights the importance of pathogenic mutations in these regions.


Assuntos
Citoplasma/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Clonagem Molecular , Cricetinae , Deutério/metabolismo , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Hidrogênio/metabolismo , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação , Plasmídeos/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
2.
Traffic ; 17(7): 754-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27062026

RESUMO

Clathrin facilitates vesicle formation during endocytosis and sorting in the trans-Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc-YR) , which fused the N-terminus of yeast CHC (1-1312) to the rat CHC residues 1318-1675, including the CHC trimerization region. The novel CHC-YR allele encoded a stable protein that fractionated as a trimer. CHC-YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC-YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc-YR-GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1-GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC-YR, indicating that Chc-YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc-YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non-trimerization roles for the clathrin LC.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Cadeias Leves de Clatrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Membrana Celular/metabolismo , Cadeias Pesadas de Clatrina/genética , Cadeias Leves de Clatrina/genética , Endocitose/fisiologia , Proteínas de Fluorescência Verde/genética , Ligação Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA