Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502149

RESUMO

Chronic kidney disease (CKD) is a worldwide public health issue affecting 14% of the general population. However, research focusing on CKD mechanisms/treatment is limited because of a lack of animal models recapitulating the disease physiopathology, including its complications. We analyzed the effects of a three-week diet rich in sodium oxalate (OXA diet) on rats and showed that, compared to controls, rats developed a stable CKD with a 60% reduction in glomerular filtration rate, elevated blood urea levels and proteinuria. Histological analyses revealed massive cortical disorganization, tubular atrophy and fibrosis. Males and females were sensitive to the OXA diet, but decreasing the diet period to one week led to GFR significance but not stable diminution. Rats treated with the OXA diet also displayed classical CKD complications such as elevated blood pressure and reduced hematocrit. Functional cardiac analyses revealed that the OXA diet triggered significant cardiac dysfunction. Altogether, our results showed the feasibility of using a convenient and non-invasive strategy to induce CKD and its classical systemic complications in rats. This model, which avoids kidney mass loss or acute toxicity, has strong potential for research into CKD mechanisms and novel therapies, which could protect and postpone the use of dialysis or transplantation.


Assuntos
Dieta/efeitos adversos , Cardiopatias/etiologia , Hiperoxalúria/etiologia , Ácido Oxálico/toxicidade , Insuficiência Renal Crônica/etiologia , Animais , Pressão Sanguínea , Feminino , Taxa de Filtração Glomerular , Frequência Cardíaca , Hematócrito , Masculino , Ácido Oxálico/administração & dosagem , Ácido Oxálico/farmacocinética , Ratos , Ratos Wistar
2.
Biochem Biophys Res Commun ; 533(3): 376-382, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32962862

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Conexinas/genética , Conexinas/metabolismo , Contactina 2/genética , Contactina 2/metabolismo , Estimulação Elétrica , Expressão Gênica , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/fisiologia , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Cultura Primária de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina I/genética , Troponina I/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteína alfa-5 de Junções Comunicantes
3.
Neuroscience ; 396: 94-107, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452974

RESUMO

Peripheral nerve injury is an important cause of incapability and has limited available treatment. Autologous donor nerve implant is the golden standard treatment, however, may cause secondary deficits. Stem cells show positive results in preclinical settings, preserving tissue and function. We tested the efficacy of stem cells derived from human exfoliated deciduous teeth seeded in poly (lactide-co-glycolide) scaffolds in sciatic nerve transection model. Seventy-two adult male Wistar rats had 7-mm nerve gap bridge using scaffolds with (or without) stem cells. Animals were randomly divided into: sham-operated; sham-operated without scaffold; sham-operated + scaffold + stem cells; sciatic transection + no treatment; sciatic transection + acellular scaffolds; sciatic transection + scaffold + stem cells. Sciatic Functional Index and Ladder Rung Walking tests were performed before (-1), 14 and 28 days after surgery. Morphometric nerve measurement and muscle weights were assessed. Scaffolds with stem cells improved function in Sciatic Functional Index. Acellular scaffold was effective, promoting functional recovery and nerve regeneration following nerve injury. Scaffolds provide better nerve regeneration and functional recovery after sciatic transection. Despite cell therapy promoting faster recovery after sciatic transection in the Sciatic Index Score, stem cells did not improve functional and morphological recovery after nerve injury. This is the first study testing the potential use of scaffolds combined with stem cells in the early stages after injury. Scaffolds with stem cells could accelerate nerve recovery and favor adjuvant therapies, evidencing the need for further studies to increase the knowledge about stem cells' mechanisms.


Assuntos
Regeneração Nervosa/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Alicerces Teciduais , Animais , Humanos , Masculino , Ratos , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Transplante de Células-Tronco , Caminhada/fisiologia
4.
Curr Protoc Hum Genet ; 92: 21.7.1-21.7.22, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28075482

RESUMO

Human induced pluripotent stem (hiPS) cell technology has already revolutionized some aspects of fundamental and applied research such as study of disease mechanisms and pharmacology screening. The first clinical trial using hiPS cell-derived cells began in Japan, only 10 years after the publication of the proof-of concept article. In this exciting context, strategies to generate hiPS cells have evolved quickly, tending towards non-invasive protocols to sample somatic cells combined with "safer" reprogramming strategies. In this unit, we describe a protocol combining both of these advantages to generate hiPS cells with episomal plasmid transfection from urine samples of individuals carrying the desired genotype. Based on previous published works, this simplified protocol requires minimal equipment and reagents, and is suitable both for scientists familiar with the hiPS cells technology and neophytes. HiPS cells displaying classical features of pluripotency and suitable for all desired downstream applications are generated rapidly (<10 weeks) and with high efficiency. © 2017 by John Wiley & Sons, Inc.


Assuntos
Separação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Urina/citologia , Animais , Técnicas de Cultura de Células , Células Alimentadoras , Feminino , Humanos , Masculino , Camundongos , Plasmídeos/genética , Transfecção
5.
Cell Reprogram ; 18(6): 369-381, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27906586

RESUMO

Scaffolds produced by electrospinning act as supports for cell proliferation and differentiation, improved through the release of neurotrophic factors. The objective of this study was to develop aligned and random nanofiber scaffolds with and without nerve growth factor to evaluate the potential of mesenchymal stem cells (MSCs) for neural differentiation. Nanofiber morphology, diameter, degradability, cell morphology, adhesion, proliferation, viability, cytotoxicity, and neural differentiation were performed to characterize the scaffolds. The expression for nestin, ß-III tubulin, and neuron-specific enolase was also evaluated. The scaffolds demonstrated a satisfactory environment for MSC growth, being nontoxic. The MSCs cultivated on the scaffolds were able to adhere and proliferate. The evaluation of neural differentiation indicated that in all groups of scaffolds the MSCs were able to upregulate neural gene expression.


Assuntos
Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Adipócitos/citologia , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Humanos , Nanofibras/química , Osteogênese
6.
Burns ; 40(8): 1650-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24794225

RESUMO

The combination of mesenchymal stem cells (MSCs) and nanotechnology to promote tissue engineering presents a strategy for the creation of new substitutes for tissues. Aiming at the utilization of the scaffolds of poly-d,l-lactic acid (PDLLA) associated or not with Spirulina biomass (PDLLA/Sp) in skin wounds, MSCs were seeded onto nanofibers produced by electrospinning. These matrices were evaluated for morphology and fiber diameter by scanning electron microscopy and their interaction with the MSCs by confocal microscopy analysis. The biomaterials were implanted in mice with burn imitating skin defects for up to 7 days and five groups were studied for healing characteristics. The scaffolds demonstrated fibrous and porous structures and, when implanted in the animals, they tolerated mechanical stress for up to two weeks. Seven days after the induction of lesions, a similar presence of ulceration, inflammation and fibrosis among all the treatments was observed. No group showed signs of re-epithelization, keratinization or presence of hair follicles on the lesion site. In conclusion, although there was no microscopical difference among all the groups, it is possible that more prolonged analysis would show different results. Moreover, the macroscopic analysis of the groups with the scaffolds showed better cicatrization in comparison with the control group.


Assuntos
Queimaduras/terapia , Ácido Láctico , Células-Tronco Mesenquimais , Nanofibras , Polímeros , Alicerces Teciduais , Animais , Modelos Animais de Doenças , Camundongos , Poliésteres , Spirulina , Engenharia Tecidual , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA