RESUMO
The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.
RESUMO
Solubility is an essential concept in chemistry that describes the ability of a substance to dissolve in a particular solvent. Despite its importance in many fields of science, understanding the basic principles of solubility is challenging for many undergraduate students. Notably, students often encounter difficulties in comprehending the role of counterions when dealing with charged molecules. Here, we bring the opportunity to assimilate the key concepts of solubility regarding the role of counterions by developing a straightforward, cheap, and visually appealing experiment that focuses on the strategic use of counterions to control solubility. A student questionnaire delivered encouraging results with most of students giving positive feedback in both interest and training their hands-on skills. Hence, our experiment offers a proficient understanding of the solubility concept, thus preparing undergraduate students for advanced courses in the various subject areas of chemistry.
RESUMO
Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.
RESUMO
In the last decade, the use of graphene supported on solid surfaces has broadened its scope and applications, and graphene has acquire a promising role as a major component of high-performance electronic devices. In this context, the chemical modification of graphene has become essential. In particular, covalent modification offers key benefits, including controllability, stability, and the facility to be integrated into manufacturing operations. In this Review, we critically comment on the latest advances in the covalent modification of supported graphene on substrates. We analyze the different chemical modifications with special attention to radical reactions. In this context, we review the latest achievements in reactivity control, tailoring electronic properties, and introducing active functionalities. Finally, we extended our analysis to other emerging 2D materials supported on surfaces, such as transition metal dichalcogenides, transition metal oxides, and elemental analogs of graphene.
RESUMO
Since graphene was exfoliated in 2004, two-dimensional (2D) materials have received great attention due to their physical and chemical properties associated with their nanosized thickness and the correlated quantum size effect. 2D planes allow the confinement of charge carriers, heat, and photons, leading to the remarkable electronic and optical properties of these materials. The Faraday Discussion"Chemistry of 2-dimensional materials: beyond graphene" has been an incredible showcase for a variety of highly interesting contributions in the field. This conference comprised a large number of aspects of the topic: from their synthesis and the study of their optical and physical properties to their numerous applications. These concluding remarks aim to capture the recent developments in 2D materials chemistry and physics that were presented and debated during this Faraday Discussion, and more generally in the research field in recent years. Particular attention will be paid to aspects like the synthesis of the materials, their toxicity and biodegradation, and some of their major applications in catalysis, as well as Li-ion batteries, water filtration and sensing. In addition we aim to highlight future challenges that still need to be addressed.
RESUMO
The concise synthesis of sulfur-enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur-enriched-reduced GO (S-rGO). Various techniques, such as X-ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S-rGO with polyoxometalate (POM) as a cathode-active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S-rGO surface. This battery, based on a POM/S-rGO complex, exhibited greater cycling stability for the charge-discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur-containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.
RESUMO
The graphene family has captured the interest and the imagination of an increasing number of scientists working in different fields, ranging from composites to flexible electronics. In the area of biomedical applications, graphene is especially involved in drug delivery, biosensing and tissue engineering, with strong contributions to the whole nanomedicine area. Besides the interesting results obtained so far and the evident success, there are still many problems to solve, on the way to the manufacturing of biomedical devices, including the lack of standardization in the production of the graphene family members. Control of lateral size, aggregation state (single vs. few layers) and oxidation state (unmodified graphene vs. oxidized graphenes) is essential for the translation of this material into clinical assays. In this Tutorial Review we critically describe the latest developments of the graphene family materials into the biomedical field. We analyze graphene-based devices starting from graphene synthetic strategies, functionalization and processibility protocols up to the final in vitro and in vivo applications. We also address the toxicological impact and the limitations in translating graphene materials into advanced clinical tools. Finally, new trends and guidelines for future developments are presented.
Assuntos
Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos , Grafite/química , Engenharia Tecidual , Animais , HumanosRESUMO
In the vast field of functionalization routes to carbon nanoforms, the fulfillment of such critical requirements as quick and nonharsh methods, good dispersibility, introduction of reactive groups, short reaction time, and low cost can be quite challenging. Traditional thermally induced diazonium chemistry on single-walled carbon nanotubes (SWCNTs) is revisited by using commercial anilines and providing useful insight into the versatility of this approach. Functionalized SWCNTs with multiple controllable features, such as degree (and ratio) of coverage, orthogonalization, doping, and high water dispersibility, are obtained by introducing benzenesulfonic acid and benzylamine moieties. The scenario opens up an avenue to address relevant applications in which most functionalization methods could not be applied in a straightforward way.
RESUMO
The utilization of grown or deposited graphene on solid substrates offers key benefits for functionalization processes, but especially to attain structures with a high level of control for electronics and "smart" materials. In this review, we will initially focus on the nature and properties of graphene on substrates, based on the method of preparation. We will then analyze the most relevant literature on the functionalization of graphene on substrates. In particular, we will comparatively discuss radical reactions, cycloadditions, halogenations, hydrogenations, and oxidations. We will especially address the question of how the reactivity of graphene is affected by its morphology (i.e., number of layers, defects, substrate, curvature, etc.).
Assuntos
Grafite/química , Técnicas Biossensoriais , Oxirredução , Espectrometria por Raios X , Análise Espectral Raman , Especificidade por SubstratoRESUMO
Molybdenum disulfide (MoS2) attracts the attention of the scientific community due to its thickness dependent properties. To fully exploit these features, it is necessary to produce the material in mono or few-layers on a large scale. Several methodologies have been developed for this purpose, the most promising one being liquid phase exfoliation (LPE). LPE allows obtaining good quality exfoliated MoS2 in a simple and scalable manner. Herein we report the simultaneous exfoliation and functionalization of MoS2 in chloroform using a specific porphyrin, namely tetrapyridyl porphyrin. We have corroborated that the exfoliation of MoS2 in the volatile solvent increases in the presence of the porphyrin due to the different interactions between them, obtaining dispersions with good concentrations. Additionally, the optical properties of the porphyrin are modified by these interactions. The characterization carried out by several techniques supports the hypothesis that the interactions occur through the pyridyl rings of the porphyrin and the molybdenum atoms of the material.
RESUMO
Imine self-assembly stands as a potent strategy for the preparation of molecular organic cages. However, challenges persist, such as water insolubility and limited recognition properties due to constraints in the application of specific components during the self-assembly process. In this study, we addressed these limitations by initially employing a locking strategy, followed by a postassembly modification. This sequential approach enables precise control over both the solubility and host-guest properties of an imine-based cage. The resulting structure demonstrates water solubility and exhibits an exceptional capacity to selectively interact with anionic surfactants, inducing their precipitation. Remarkably, each cage precipitates 24 equiv of anionic surfactants even at concentrations much lower than the surfactant's critical micelle concentration (CMC), ensuring their complete removal. Molecular simulations elucidate how anionic surfactants specifically interact with the cage to facilitate aggregation below the surfactant CMC and induce precipitation as a micellar cross-linker. This innovative class of cages paves the way for the advancement of materials tailored for environmental remediation.
RESUMO
Introduction: Rheumatoid arthritis (RA) is a heterogeneous disease in which therapeutic strategies used have evolved dramatically. Despite significant progress in treatment strategies such as the development of anti-TNF drugs, it is still not possible to differentiate those patients who will respond from who will not. This can lead to effective-treatment delays and unnecessary costs. The aim of this study was to utilize a profile of the patient's characteristics, clinical parameters, immune status (cytokine profile) and artificial intelligence to assess the feasibility of developing a tool that could allow us to predict which patients will respond to treatment with anti-TNF drugs. Methods: This study included 38 patients with RA from the RA-Paz cohort. Clinical activity was measured at baseline and after 6 months of treatment. The cytokines measured before the start of anti-TNF treatment were IL-1, IL-12, IL-10, IL-2, IL-4, IFNg, TNFa, and IL-6. Statistical analyses were performed using the Wilcoxon-Rank-Sum Test and the Benjamini-Hochberg method. The predictive model viability was explored using the 5-fold cross-validation scheme in order to train the logistic regression models. Results: Statistically significant differences were found in parameters such as IL-6, IL-2, CRP and DAS-ESR. The predictive model performed to an acceptable level in correctly classifying patients (ROC-AUC 0.804167 to 0.891667), suggesting that it would be possible to develop a clinical classification tool. Conclusions: Using a combination of parameters such as IL-6, IL-2, CRP and DAS-ESR, it was possible to develop a predictive model that can acceptably discriminate between remitters and non-remitters. However, this model needs to be replicated in a larger cohort to confirm these findings.
RESUMO
The persistence of photoresist residues from microfabrication procedures causes significant obstacles in the technological advancement of graphene-based electronic devices. These residues induce undesired chemical doping effects, diminish carrier mobility, and deteriorate the signal-to-noise ratio, making them critical in certain contexts, including sensing and electrical recording applications. In graphene solution-gated field-effect transistors (gSGFETs), the presence of polymer contaminants makes it difficult to perform precise electrical measurements, introducing response variability and calibration challenges. Given the absence of viable short to midterm alternatives to polymer-intensive microfabrication techniques, a postpatterning treatment involving THF and ethanol solvents was evaluated, with ethanol being the most effective, environmentally sustainable, and safe method for residue removal. Employing a comprehensive analysis with XPS, AFM, and Raman spectroscopy, together with electrical characterization, we investigated the influence of residual polymers on graphene surface properties and transistor functionality. Ethanol treatment exhibited a pronounced enhancement in gSGFET performance, as evidenced by a shift in the charge neutrality point and reduced dispersion. This systematic cleaning methodology holds the potential to improve the reproducibility and precision in the manufacturing of graphene devices. Particularly, by using ethanol for residue removal, we align our methodology with the principles of green chemistry, minimizing environmental impact while advancing diverse graphene technology applications.
RESUMO
OBJECTIVE: To update the consensus document of the Spanish Society of Rheumatology (SER) regarding the use of targeted biological and synthetic therapies in rheumatoid arthritis (RA) with the aim of assisting clinicians in their therapeutic decisions. METHODS: A panel of 13 experts was assembled through an open call by SER. We employed a mixed adaptation-elaboration-update methodology starting from the 2015 Consensus Document of the Spanish Society of Rheumatology on the use of biological therapies in RA. Starting with systematic reviews (SR) of recommendations from EULAR 2019, American College of Rheumatology 2021, and GUIPCAR 2017, we updated the search strategies for the PICO questions of GUIPCAR. An additional SR was conducted on demyelinating disease in relation to targeted biological and synthetic therapies. Following the analysis of evidence by different panelists, consensus on the wording and level of agreement for each recommendation was reached in a face-to-face meeting. RESULTS: The panel established 5 general principles and 15 recommendations on the management of RA. These encompassed crucial aspects such as the importance of early treatment, therapeutic goals in RA, monitoring frequency, the use of glucocorticoids, the application of conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), biological DMARDs (bDMARDs), and targeted synthetic DMARDs. Additionally, recommendations on dose reduction of these drugs in stable patients were included. This update also features recommendations on the use of bDMARDs and Janus Kinase inhibitors in some specific clinical situations, such as patients with lung disease, a history of cancer, heart failure, or demyelinating disease. CONCLUSIONS: This update provides recommendations on key aspects in the management of RA using targeted biological and synthetic therapies.
Assuntos
Antirreumáticos , Artrite Reumatoide , Artrite Reumatoide/tratamento farmacológico , Humanos , Antirreumáticos/uso terapêutico , Terapia de Alvo Molecular , Terapia Biológica , Produtos Biológicos/uso terapêutico , EspanhaRESUMO
Oligofurans linked by a rigid tether undergo tandem cycloaddition reactions with high stereoselectivity. The reaction of bisfurans with dimethyl acetylenedicarboxylate (DMAD) involves tandem [4 + 2]/[4 + 2] cycloadditions in a pincer mode. The reaction of oligofurans with arynes involves stereoselective tandem [4 + 2]/[4 + 2] cycloaddition reactions in a domino mode. The corresponding aryne adducts have been transformed into extended perylene derivatives by deoxygenation and aromatization with HCl/EtOH.
RESUMO
Dendrimers constitute a distinctive category of synthetic materials that bear resemblance to proteins in various aspects, such as discrete structural organization, globular morphology, and nanoscale dimensions. Remarkably, these attributes coexist with the capacity for facile large-scale production. Due to these advantages, the realm of dendrimers has undergone substantial advancement since their inception in the 1980s. Numerous reviews have been dedicated to elucidating this subject comprehensively, delving into the properties and applications of quintessential dendrimer varieties like PAMAM, PPI, and others. Nevertheless, the contemporary landscape of dendrimers transcends these early paradigms, witnessing the emergence of a diverse array of novel dendritic architectures in recent years. In this review, we aim to present a comprehensive panorama of the expansive domain of dendrimers. As such, our focus lies in discussing the key attributes and applications of the predominant types of dendrimers existing today. We will commence with the conventional variants and progressively delve into the more pioneering ones, including Janus, supramolecular, shape-persistent, and rotaxane dendrimers.
RESUMO
In the last decade, solution-gated graphene field effect transistors (GFETs) showed their versatility in the development of a miniaturized multiplexed platform for electrophysiological recordings and sensing. Due to their working mechanism, the surface functionalisation and immobilisation of receptors are pivotal to ensure the proper functioning of devices. Herein, we present a controlled covalent functionalisation strategy based on molecular design and electrochemical triggering, which provide a monolayer-like functionalisation of micro-GFET arrays retaining the electronic properties of graphenes. The functionalisation layer as a receptor was then employed as the linker for serotonin aptamer conjugation. The micro-GFET arrays display sensitivity toward the target analyte in the micromolar range in a physiological buffer (PBS 10 mM). The sensor allows the in-flow real-time monitoring of serotonin transient concentrations with fast and reversible responses.