Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Parasitology ; 151(2): 168-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037706

RESUMO

Geographical distribution plays a major role in our understanding of marine biodiversity. Some marine fish trematodes have been shown to have highly restricted geographical distributions, while some are known to occur over very wide ranges; however, very few of these wide distributions have been demonstrated genetically. Here, we analyse species of the genus Schikhobalotrema (Haplosplanchnidae) parasitizing beloniforms from the tropical west Pacific, the eastern Pacific and the Gulf of Mexico (GoM). We test the boundaries of these trematodes by integrating molecular and morphological data, host association, habitat of the hosts and geographical distribution, following a recently proposed and standardized delineation method for the recognition of marine trematode species. Based on the new collections, Schikhobalotrema huffmani is here synonymized with the type-species of the genus, Schikhobalotrema acutum; Sch. acutum is now considered to be widely distributed, from the GoM to the western Pacific. Additionally, we describe a new species, Schikhobalotrema minutum n. sp., from Strongylura notata and Strongylura marina (Belonidae) from La Carbonera coastal lagoon, northern Yucatán, GoM. We briefly discuss the role of host association and historical biogeography of the hosts as drivers of species diversification of Schikhobalotrema infecting beloniforms.


Assuntos
Beloniformes , Trematódeos , Animais , Golfo do México , Oceano Pacífico , Trematódeos/genética , Biodiversidade
2.
Syst Parasitol ; 100(4): 363-379, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37133708

RESUMO

Integration of morphological and molecular approaches to species delineation has become an essential part of digenean trematode taxonomy, particularly when delimiting cryptic species. Here, we use an integrated approach to distinguish and describe two morphologically cryptic species of Hysterolecitha Linton, 1910 (Trematoda: Lecithasteridae) from fishes of Moreton Bay, Queensland, Australia. Morphological analyses of Hysterolecitha specimens from six fish species demonstrated a complete overlap in morphometric data with no reliable differences in their gross morphological characters that suggested the presence of more than one species. Distinctions in ITS2 rDNA and cox1 mtDNA sequence data for corresponding specimens suggested the presence of two forms. A principal component analysis on an imputed dataset showed clear separation between the two forms. These two forms are partially separated on the basis of their host's identity. Therefore, we describe two morphologically cryptic species: Hysterolecitha melae n. sp. from three species of Abudefduf Forsskål and one species of Parma Günther (Pomacentridae), with the Bengal sergeant, Abudefduf bengalensis (Bloch), as the type-host; and Hysterolecitha phisoni n. sp. from species of Pomacentridae (including A. bengalensis), Pomatomidae and Siganidae, with the black rabbitfish, Siganus fuscescens (Houttuyn), as the type-host.


Assuntos
Doenças dos Peixes , Perciformes , Trematódeos , Infecções por Trematódeos , Animais , Baías , Especificidade de Hospedeiro , Filogenia , Especificidade da Espécie , Austrália , Peixes
3.
Syst Parasitol ; 100(4): 381-413, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160818

RESUMO

We report nine species of the Schistorchiinae Yamaguti, 1942 (Apocreadiidae Skrjabin, 1942) from Indo-Pacific marine fishes. Molecular data (ITS2 and 28S rDNA and cox1 mtDNA) are provided for all species and the genus-level classification of the subfamily is revised. For Schistorchis Lühe, 1906, we report the type-species Sch. carneus Lühe, 1906 and Sch. skrjabini Parukhin, 1963. For Sphinteristomum Oshmarin, Mamaev & Parukhin, 1961 we report the type-species, Sph. acollum Oshmarin, Mamaev & Parukhin, 1961. We report and re-recognise Lobatotrema Manter, 1963, for the type and only species, L. aniferum Manter, 1963, previously a synonym of Sph. acollum. Lobatotrema aniferum is phylogenetically distant from, but morphologically similar to, Sph. acollum and Lobatotrema is recognised as a 'cryptic genus'. We propose Blendiella n. gen. for B. trigintatestis n. sp. and B. tridecimtestis n. sp. These species are broadly consistent with the present morphological concept of Schistorchis but are phylogenetically distant from the type-species; a larger number of testes and some other subtle morphological characters in species of Blendiella serve to distinguish the two genera. We report three species of Paraschistorchis Blend, Karar & Dronen, 2017: P. stenosoma (Hanson, 1953) Blend, Karar & Dronen, 2017 (type-species), P. seychellesiensis (Toman, 1989) Blend, Karar & Dronen, 2017, and P. zancli (Hanson, 1953) Blend, Karar & Dronen, 2017. Lobatotrema aniferum, P. stenosoma, and Sch. carneus each have two distinct cox1 populations either over geographical range or in sympatry. Available evidence suggests that most of these species, but not all, are widespread in the tropical Indo-Pacific.


Assuntos
Peixes , Trematódeos , Animais , Filogenia , Especificidade da Espécie , Peixes/genética , DNA Ribossômico/genética
4.
Parasitology ; : 1-18, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35225757

RESUMO

We report specimens of monorchiids infecting Haemulidae from the waters off Japan and Australia; these specimens represent five species of Helicometroides Yamaguti, 1934, three of which are unambiguously new. Helicometroides murakamii n. sp. infects Diagramma pictum pictum from off Minabe, Japan; Helicometroides gabrieli n. sp. infects Plectorhinchus chrysotaenia from off Lizard Island, Australia; and Helicometroides wardae n. sp. infects Plectorhinchus flavomaculatus and Plectorhinchus multivittatus from off Heron Island, Australia. Helicometroides murakamii n. sp. and H. gabrieli n. sp. conform to the most recent diagnosis of Helicometroides in lacking a terminal organ, but H. wardae n. sp. possesses a terminal organ with distinct, robust spines; despite this morphological distinction, the three form a strongly-supported clade in phylogenetic analyses. We also report specimens morphologically consistent with Helicometroides longicollis Yamaguti, 1934, from D. pictum pictum from off Minabe, Japan, and Diagramma pictum labiosum on the Great Barrier Reef, Australia. Genetic analyses of ITS2 rDNA, 28S rDNA and cox1 mtDNA sequence data for the Japanese specimens reveal the presence of two distinct genotypes. Specimens of the two genotypes were discovered in mixed infections and are morphologically indistinguishable; neither genotype can be associated definitively with H. longicollis as originally described. We thus identify them as H. longicollis lineage 1 and 2, pending study of further fresh material. Genetic analyses of specimens from the Great Barrier Reef are consistent with the presence of only H. longicollis lineage 1. This species thus has a range that incorporates at least Australia and Japan, localities separated by over 7000 km.

5.
Parasitology ; : 1-23, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35357289

RESUMO

The taxonomy of species of Bivesicula Yamaguti, 1934 is analysed for samples from holocentrid, muraenid and serranid fishes from Japan, Ningaloo Reef (Western Australia), the Great Barrier Reef (Queensland), New Caledonia and French Polynesia. Analysis of three genetic markers (cox1 mtDNA, ITS2 and 28S rDNA) identifies three strongly supported clades of species and suggests that Bivesicula as presently recognized is not monophyletic. On the basis of combined morphological, molecular and biological data, 10 species are distinguished of which five are proposed as new. Bivesicula Clade 1 comprises seven species of which three are effectively morphologically cryptic relative to each other; all seven infect serranids and four also infect holocentrids. Bivesicula Clade 2 comprises three species of which two are effectively morphologically cryptic relative to each other; all three infect serranids and one also infects a muraenid. Bivesicula Clade 3 comprises two known species from apogonids and a pomacentrid, and forms a clade with species of Paucivitellosus Coil, Reid & Kuntz, 1965 to the exclusion of other Bivesicula species. Taxonomy in this genus is made challenging by the combination of low resolving power of ribosomal markers, the existence of regional cox1 mtDNA populations, exceptional and unpredictable host-specificity and geographical distribution, and significant host-induced morphological variation.

6.
Syst Parasitol ; 99(3): 375-397, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394638

RESUMO

A new species of lepocreadiid, Opechonoides opisthoporus n. sp., is described infecting 12 pomacentrid fish species from the Great Barrier Reef, Australia, with Abudefduf whitleyi Allen & Robertson as the type-host. This taxon differs from the only other known member of the genus, Opechonoides gure Yamaguti, 1940, in the sucker width ratio, cirrus-sac length, position of the testes, position of the pore of Laurer's canal, and relative post-testicular distance. The new species exhibits stenoxenic host-specificity, infecting pomacentrids from seven genera: Abudefduf Forsskål, Amphiprion Bloch & Schneider, Neoglyphidodon Allen, Neopomacentrus Allen, Plectroglyphidodon Fowler & Ball, Pomacentrus Lacépède and Stegastes Jenyns. Phylogenetic analyses of 28S rDNA sequence data demonstrate that O. opisthoporus n. sp. forms a strongly supported clade with Prodistomum orientale (Layman, 1930) Bray & Gibson, 1990. The life cycle of this new species is partly elucidated on the basis of ITS2 rDNA sequence data; intermediate hosts are shown to be three species of Ctenophora. New host records and molecular data are reported for Lepocreadium oyabitcha Machida, 1984 and Lepotrema amblyglyphidodonis Bray, Cutmore & Cribb, 2018, and new molecular data are provided for Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018 and Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996. Novel cox1 mtDNA sequence data showed intraspecific geographical structuring between Heron Island and Lizard Island for L. acanthochromidis but not for L. adlardi or O. opisthoporus n. sp.


Assuntos
Gastrópodes , Perciformes , Trematódeos , Infecções por Trematódeos , Animais , Austrália , DNA Ribossômico/genética , Peixes/genética , Estágios do Ciclo de Vida , Filogenia , Especificidade da Espécie , Trematódeos/genética
7.
Mol Phylogenet Evol ; 164: 107290, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371186

RESUMO

Novel multi-locus sequence data were used to assess the molecular phylogenetic relationships of fish blood flukes showing similarity to the genus Cardicola Short, 1953 (Trematoda: Aporocotylidae). Analyses of three ribosomal (ITS2, 28S & 18S) subregions and one mitochondrial (cox1) DNA subregion shows that the hitherto-monophyletic clade formed by species of Cardicola Short, 1953 also includes species of three other genera - Braya Nolan & Cribb, 2006, Elaphrobates Bullard & Overstreet, 2003 and Rhaphidotrema Yong & Cribb, 2011 - as well as a new, morphologically distinct species discovered from the heart of the yellowfin tripodfish, Tripodichthys angustifrons (Tetraodontiformes: Triacanthidae). In the context of conflicting morphological, molecular and ecological data, we argue that the recognition of seven genera produces a more satisfactory taxonomy for these parasites than considering them all as species of Cardicola. We thus recognise Cardicola (as an explicitly polyphyletic taxon) together with Braya, Elaphrobates, Rhaphidotrema and three new genera. We propose Allocardicola n. gen. for A. johnpagei n. sp. from T. angustifrons, Chanicola n. gen. for three species of Cardicola that infect the chanid Chanos chanos, and Spirocaecum n. gen. for six species of Cardicola that infect siganid fishes. We interpret the pattern of diversification seen in the clade of these seven genera as one of multiple host-switching events followed by diversification among closely-related hosts and differing levels of morphological divergence.


Assuntos
Doenças dos Peixes , Trematódeos , Infecções por Trematódeos , Animais , DNA Espaçador Ribossômico/genética , Doenças dos Peixes/parasitologia , Filogenia , Trematódeos/genética , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária
8.
Syst Parasitol ; 98(5-6): 595-624, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536191

RESUMO

We report eight species of Lintonium from tetraodontiform fishes from Australian waters and describe six of them as new. Two species are described from tetraodontids from the Great Barrier Reef (GBR): Lintonium kostadinovae n. sp. from Arothron nigropunctatus (Bloch & Schneider) and Arothron hispidus (Linnaeus); and Lintonium droneni n. sp. from A. nigropunctatus. Two species are described from temperate monacanthids: Lintonium crowcrofti n. sp. from Meuschenia hippocrepis (Quoy & Gaimard) and Meuschenia freycineti (Quoy & Gaimard) off Tasmania and from M. hippocrepis off Glenelg, South Australia and off Fremantle, Western Australia; and Lintonium blendi n. sp. from M. hippocrepis off Stanley, Tasmania. The final two new species are described from tropical monacanthids: Lintonium currani n. sp. from Cantherhines pardalis (Rüppell) from Ningaloo Reef, Western Australia; and Lintonium madhaviae n. sp. from Amanses scopas (Cuvier) from the southern GBR. Two previously described species are reported from tetraodontids: Lintonium pulchrum (Johnston, 1913) Yamaguti, 1954 from Arothron stellatus (Anonymous), A. hispidus, A. manilensis (Marion de Procé) and Lagocephalus lunaris (Bloch & Schneider) from the GBR and southern Queensland; and Lintonium consors (Lühe, 1906) Crowcroft, 1950 from A. nigropunctatus from the southern GBR. Sequence data for three markers (ITS2 and 28S rDNA and cox1 mtDNA) for six of the eight species (L. crowcrofti n. sp., L. currani n. sp., L. droneni n. sp., L. kostadinovae n. sp., L. madhaviae n. sp. and L. pulchrum) are the first for the genus and distinguish each species unambiguously. Many records of species of Lintonium, especially widespread records of the type species, L. vibex (Linton, 1900) Stunkard & Nigrelli, 1930, remain to be clarified. A key finding of the present study is that three fish species (A. hispidus, A. nigropunctatus and M. hippocrepis) are identified as harbouring either two or three species of Lintonium at individual localities.


Assuntos
Tetraodontiformes , Trematódeos , Animais , Austrália , DNA Ribossômico/genética , Peixes/genética , Especificidade da Espécie , Trematódeos/genética
9.
Syst Parasitol ; 97(6): 859-861, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32844377

RESUMO

Shortly after publication it was brought to authors' attention that two of the cox1 sequences reported in the study, those of Neoechinorhynchus tylosuri (MN692675) and Transvena annulospinosa (MN692690) were potentially erroneous. After investigation, it was determined that this was indeed the case and was caused by contamination of original sequencing results. They were found to be near-duplicates of other species from the same sequencing batch. These sequences have been removed from GenBank. Unfortunately, this means that no cox1 sequence data were provided for the above two species in the referenced study. The remaining cox1 sequences reported have been checked and are reliable. Furthermore, cox1 sequence data were not analysed as part of the study, and thus the above error does not affect the results or conclusions of the study. Corrections to the text in reference to the above are made in Table 1 (removal of the above GenBank accession numbers), on page 10 ("Sequence data for all three targeted markers were obtained for 13 (rather than 15) of the 17 acanthocephalan species studied") and on page 19 ("We generated new cox1 sequence data for all but three (rather than one) of the acanthocephalan species from our collection…").

10.
Syst Parasitol ; 97(5): 455-476, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794085

RESUMO

Three new species of the family Bucephalidae Poche, 1907 (Trematoda: Digenea) are described from the yellowtail pike, Sphyraena obtusata Cuvier (Sphyraenidae), from Moreton Bay, Queensland, Australia. The three species are morphologically consistent with the present broad concept of the genus Bucephalus Baer, 1827, but significant phylogenetic and ecological differences relative to the type-species of Bucephalus require the proposal of a new genus. Aenigmatrema n. g. is proposed for A. undecimtentaculatum n. sp. (type-species), A. inopinatum n. sp. and A. grandiovum n. sp. In addition, based on morphological, ecological and biogeographical similarities, we recombine two existing species of Bucephalus as Aenigmatrema kaku (Yamaguti, 1970) n. comb. and Aenigmatrema sphyraenae (Yamaguti, 1952) n. comb. Although the three species described in this study are extremely morphologically similar, they can be differentiated from each other, and from A. kaku and A. sphyraenae, morphometrically on the basis of egg size, tentacle number and a combination of the caecum and vitelline field lengths. Complete ITS2 rDNA, partial 28S rDNA and partial cox1 mtDNA sequence data were generated for the three new species, which formed a well-supported clade in all 28S phylogenetic analyses. An expanded phylogenetic tree for the subfamily Bucephalinae Poche, 1907 is presented, demonstrating unresolved issues with the morphology-based taxonomy of the subfamily. The three largest genera, Bucephalus, Rhipidocotyle Diesing, 1858 and Prosorhynchoides Dollfus, 1929 remain extensively polyphyletic, indicating the need for significant further systematic revision.


Assuntos
Esocidae/parasitologia , Filogenia , Trematódeos/classificação , Animais , DNA de Helmintos/genética , Queensland , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
11.
Syst Parasitol ; 97(5): 491-500, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737666

RESUMO

Prior to the present study, species of the trematode family Monorchiidae Odhner, 1911 had been reported from four of the ten families of tetraodontiform fishes: the Balistidae, Monacanthidae, Ostraciidae and Tetraodontidae. Here we report the first monorchiid from the family Triacanthidae, Pseudohurleytrema yolandae n. sp. infecting Tripodichthys angustifrons (Hollard), from Moreton Bay, Queensland, Australia. The species conforms well to the morphological concept of the subfamily Hurleytrematinae Yamaguti, 1958, and the genus Pseudohurleytrema Yamaguti, 1954, in the possession of filamented eggs, a bipartite terminal organ, and a unipartite seminal vesicle. Relative to the other three recognised species of Pseudohurleytrema, the present species is distinctive in the size of the testis and eggs, position of the ovary, and the form of the vitellarium and excretory vesicle. We consider Pseudohurleytrema magnum Kaikabad & Bilqees in Bilqees, 1991 as a species inquirenda. Sequence data for the 28S ribosomal RNA gene and cox1 mitochondrial gene were generated for P. yolandae, providing the first molecular data for the genus. Phylogenetic analysis showed that P. yolandae does not form a clade with the other three hurleytrematine genera for which there are molecular data (Helicometroides Yamaguti, 1934, Hurleytrematoides Yamaguti, 1953 and Provitellus Dove & Cribb, 1998), forming a poorly-supported clade with Proctotrema addisoni Searle, Cutmore & Cribb, 2014 within the clade of the subfamily Monorchiinae Odhner, 1911. The four hurleytrematine genera resolved as four distinct clades, indicating that the current subfamilial classification requires comprehensive revision.


Assuntos
Tetraodontiformes/parasitologia , Trematódeos/classificação , Animais , Baías , DNA de Helmintos/genética , Filogenia , Queensland , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
12.
Syst Parasitol ; 97(1): 1-23, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912420

RESUMO

We provide molecular data (cox1, 18S rDNA and 28S rDNA) for 17 acanthocephalan species and 20 host-parasite combinations from Australian marine teleosts collected from off Queensland, Australia. Fourteen of these acanthocephalans are characterised with molecular data for the first time and we provide the first molecular data for a species of each of the genera Heterosentis Van Cleave, 1931, Pyriproboscis Amin, Abdullah & Mhaisen, 2003 and Sclerocollum Schmidt & Paperna, 1978. Using 18S and 28S rDNA sequences, the phylogenetic position of each newly sequenced species is assessed with both single-gene and concatenated 18S+28S maximum likelihood and Bayesian inference analyses. Additional phylogenetic analyses focusing on the genus Rhadinorhynchus Lühe, 1912 and related lineages are included. Our phylogenetic results are broadly consistent with previous analyses, recovering previously identified inconsistencies but also providing new insights and necessitating taxonomic action. We do not find sufficient evidence to recognise the Gymnorhadinorhynchidae Braicovich, Lanfranchi, Farber, Marvaldi, Luque & Timi, 2014 as distinct from the Rhadinorhynchidae Lühe, 1912. The family Gymnorhadinorhynchidae and its sole genus, Gymnorhadinorhynchus Braicovich, Lanfranchi, Farber, Marvaldi, Luque & Timi, 2014, are here recognised as junior synonyms of Rhadinorhynchidae and Rhadinorhynchus, respectively. The two species currently assigned to Gymnorhadinorhynchus are recombined as Rhadinorhynchus decapteri (Braicovich, Lanfranchi, Farber, Marvaldi, Luque & Timi, 2014) n. comb. and Rhadinorhynchus mariserpentis (Steinauer, Garcia-Vedrenne, Weinstein & Kuris, 2019) n. comb. In all of our analyses, Rhadinorhynchus biformis Smales, 2014 is found basal to the Rhadinorhynchidae + Transvenidae Pichelin & Cribb, 2001, thus resulting in a paraphyletic Rhadinorhynchidae. It appears that R. biformis may require a new genus and family; however, morphological data for this species are currently insufficient to adequately distinguish it from related lineages, thus we defer the proposal of any new higher-rank names for this species. Species of the genus Sclerocollum, currently assigned to the Cavisomidae Meyer, 1932, are found nested within the family Transvenidae. We transfer the genus Sclerocollum to the Transvenidae and amend the diagnosis of the family accordingly. The genera Gorgorhynchoides Cable & Linderoth, 1963 and Serrasentis Van Cleave, 1923, currently assigned to the Rhadinorhynchidae, are supported as sister taxa and form a clade in the Polymorphida. We transfer these genera and Golvanorhynchus Noronha, Fabio & Pinto, 1978 to an emended concept of the Isthomosacanthidae Smales, 2012 and transfer this family to the Polymorphida. Lastly, Pyriproboscis heronensis (Pichelin, 1997) Amin, Abdullah & Mhaisen, 2003, currently assigned to the Pomphorhynchidae Yamaguti, 1939, falls under the Polymorphida in our analyses with some support for a sister relationship with the Centrorhynchidae Van Cleave, 1916. As this species clearly does not belong in the Pomphorhynchidae and is morphologically and molecularly distinct from the lineages of the Polymorphida, we propose the Pyriprobosicidae n. fam. to accommodate it.


Assuntos
Acantocéfalos/classificação , Acantocéfalos/genética , Organismos Aquáticos/parasitologia , Peixes/parasitologia , Filogenia , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Queensland , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Especificidade da Espécie
13.
Syst Parasitol ; 97(5): 441-454, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32770445

RESUMO

The Monorchiidae Odhner, 1911 are well represented in tropical and subtropical marine fishes worldwide but rarely reported from the Lutjanidae, an important family of tropical fishes that prey mainly on demersal fishes, decapods and cephalopods. Here, we report the first monorchiid from a lutjanid in Australian waters, Retroporomonorchis pansho n. g., n. sp. in Lutjanus fulvus (Forster), off Lizard Island on the northern Great Barrier Reef. It is morphologically and phylogenetically distinct among known monorchiids, resolves within the Monorchiinae Odhner, 1911, and is characterised by a relatively large ventral sucker, a sinistral genital pore immediately posterior to the ventral sucker, unfilamented eggs, a single testis, and vitelline follicles restricted to the level of the gonads. We assessed all previous records of monorchiids from lutjanid fishes and found only one to be convincing, that of Infundiburictus overstreeti (Gupta & Gupta, 1990) Wee, Cutmore, Pérez-del-Olmo & Cribb, 2020 from Lutjanus monostigma (Cuvier) in the Bay of Bengal. Another, Monorcheides xishaensis Shen, 1985, from Lutjanus argentimaculatus (Forsskål) in the Paracel Islands, South China Sea, is here recognised as a cryptogonimid, and is synonymised with Siphoderina asiatica Gu & Shen, 1979. In the remaining reports, the identity of the host is either ambiguous or doubtful, or the identity of the worm is not supported with sufficient evidence.


Assuntos
Peixes/parasitologia , Trematódeos/classificação , Animais , Austrália , Especificidade de Hospedeiro , Filogenia , Especificidade da Espécie , Trematódeos/anatomia & histologia
14.
Parasitology ; 146(7): 937-946, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862321

RESUMO

The Enenteridae Yamaguti, 1958 and Gyliauchenidae Fukui, 1929 exhibit an interesting pattern of host partitioning in herbivorous fishes of the Indo-West Pacific. Enenterids are known almost exclusively from fishes of the family Kyphosidae, a group of herbivorous marine fishes common on tropical and temperate reefs. In contrast, gyliauchenids are found in most of the remaining lineages of marine herbivorous fishes, but until the present study, had never been known from kyphosids. Here we report on the first species of gyliauchenid known from a kyphosid. Endochortophagus protoporus gen. nov., sp. nov. was recovered from the Western buffalo bream, Kyphosus cornelii (Whitley, 1944), collected off Western Australia. Kyphosus cornelii also hosts an enenterid, Koseiria allanwilliamsi Bray & Cribb, 2002, and is thus the first fish known in which enenterids and gyliauchenids co-occur. Molecular phylogenetic analyses place the new species close to those of Affecauda Hall & Chambers, 1999 and Flagellotrema Ozaki, 1936, but there is sufficient morphological evidence, combined with the unusual host, to consider it distinct from these genera. We discuss factors which may have contributed to the host partitioning pattern observed between enenterids and gyliauchenids.


Assuntos
Doenças dos Peixes/parasitologia , Perciformes/parasitologia , Filogenia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Austrália , Herbivoria , Especificidade da Espécie , Trematódeos/isolamento & purificação , Infecções por Trematódeos/parasitologia
15.
Dis Aquat Organ ; 133(3): 217-245, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31187736

RESUMO

Blood flukes of the family Spirorchiidae are important disease agents in marine turtles. The family is near cosmopolitan in distribution. Twenty-nine marine species across 10 genera are currently recognized, but taxonomic problems remain and it is likely that more species will be discovered. Spirorchiids infect the circulatory system, where they and their eggs cause a range of inflammatory lesions. Infection is sometimes implicated in the death of the turtle. In some regions, prevalence in stranded turtles is close to 100%. Knowledge of life cycles, important for control and epidemiological studies, has proven elusive until recently, when the first intermediate host identifications were made. Recent molecular studies of eggs and adult worms indicate that a considerable level of intrageneric and intraspecific diversity exists. The characterization of this diversity is likely to be of importance in exploring parasite taxonomy and ecology, unravelling life cycles, identifying the differential pathogenicity of genotypes and species, and developing antemortem diagnostic tools, all of which are major priorities for future spirorchiid research. Diagnosis to date has been reliant on copromicroscopy or necropsy, which both have significant limitations. The current lack of reliable antemortem diagnostic options is a roadblock to determining the true prevalence and epidemiology of spirorchiidiasis and the development of effective treatment regimes.


Assuntos
Trematódeos , Tartarugas , Animais , Prevalência
16.
Syst Parasitol ; 96(3): 265-278, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30903448

RESUMO

Four new monorchiid trematodes are reported from Moreton Bay, Australia; three new species of Provitellus Dove & Cribb, 1998 and one species of Ovipusillus Dove & Cribb, 1998, are described from Gnathanodon speciosus (Forsskål) (Carangidae), the golden trevally. Provitellus chaometra n. sp., Provitellus infrequens n. sp. and Provitellus infibrova n. sp. differ significantly from the only other species of this genus, Provitellus turrum Dove & Cribb, 1998, in the structure of the eggs, vitelline follicles and terminal organ. The four species are united, however, in the possession of short caeca and a long genital atrium, a combination not reported previously. Ovipusillus geminus n. sp. strongly resembles its only congener, Ovipusillus mayu Dove & Cribb, 1998, but differs in the morphology of the diverticulum in the cirrus-sac and the shape of the pharynx. Complete ITS2 and partial 28S rDNA sequence data were generated for all four species, as well as for two known species of Hurleytrematoides Yamaguti, 1953, Hurleytrematoides galzini McNamara & Cribb, 2011 and Hurleytrematoides loi McNamara & Cribb, 2011. These sequences were analysed with those for other monorchiids available on GenBank, and phylogenetic analyses showed that the four species of Provitellus and two species of Ovipusillus each form strongly supported clades. As with previous monorchiid phylogenetic studies, however, the overall resolution of the phylogeny of the Monorchiidae is poor.


Assuntos
Perciformes/parasitologia , Filogenia , Trematódeos/classificação , Animais , Austrália , Baías , DNA Espaçador Ribossômico/genética , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
17.
Syst Parasitol ; 95(4): 325-336, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417344

RESUMO

Two species of the trematode genus Phyllodistomum Braun, 1899 (Gorgoderidae) are reported infecting teleost fishes from Moreton Bay, Queensland, Australia. Phyllodistomum hyporhamphi n. sp. is described from two species of garfishes (Hemiramphidae), Hyporhamphus regularis ardelio (Whitley) and H. australis (Steindachner). The new species differs from other marine species of Phyllodistomum in possessing a forebody length less than half that of the body, a body length to width ratio < 4:1, an oral sucker width to ventral sucker width ratio > 1:1 and < 2:1, 7-9 strong, marginal undulations on each side of the body and large, slightly lobed vitelline masses. Phyllodistomum pacificum Yamaguti, 1951 is reported, for the first time in Australian waters, from Pantolabus radiatus (MacLeay) (Carangidae). The new material agrees closely with the original description of P. pacificum, in Carangoides equula (Temminck & Schlegel) off Hamazima, Mie Prefecture, Japan, although the specimens from Moreton Bay are larger than those of the original description (4,575-5,338 × 1,111-1,328 vs 2,200-3,100 × 570-930 µm). Cetiotrema carangis (Manter, 1947) Manter, 1970 is found to be a synonym of Cetiotrema carangis (MacCallum, 1913) Williams & Bunkley-Williams, 1996 and the species is formally moved to Phyllodistomum as P. carangis (MacCallum, 1913) n. comb. Phylogenetic analyses of 28S rDNA data showed that the six marine species of Phyllodistomum for which molecular data are available form a strongly-supported clade.


Assuntos
Beloniformes/parasitologia , Trematódeos/classificação , Animais , Baías , Queensland , RNA Ribossômico 28S/genética , Especificidade da Espécie , Trematódeos/anatomia & histologia , Trematódeos/genética
18.
Syst Parasitol ; 95(8-9): 783-806, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30284190

RESUMO

Eight species of the trematode family Bucephalidae Poche, 1907 are reported from teleost fishes in Moreton Bay, Queensland, Australia. Heterobucephalopsis yongi n. sp. is described from Gymnothorax eurostus (Muraenidae); the new form is distinguished from its congeners in the possession of a tiny cirrus-sac relative to body length, the length of the caecum, the position of the mouth and pharynx, and the position of the testes and ovary. Two known species of Dollfustrema Eckmann, 1934, D. durum Nolan, Curran, Miller, Cutmore, Cantacessi & Cribb, 2015 and D. gibsoni Nolan & Cribb, 2010, are reported from Gymnothorax pseudothyrsoideus (Bleeker) (Muraenidae); although both species were described from Australian waters, this represents the first reports from Moreton Bay and G. pseudothyrsoideus. Four species of Prosorhynchus Odhner, 1905 are reported, including one new, P. brayi n. sp., which is described from Epinephelus coioides (Hamilton) (Serranidae); P. brayi n. sp. is distinguished from its congeners in the possession of vitelline follicles in a confluent arc distinctly posterior to a conical rhynchus, uterine coils that do not extend anterior to the vitelline arc, contiguous testes, a cirrus-sac that reaches anteriorly to at least the level of the posterior testis and a short excretory vesicle. Three known species of Prosorhynchus are reported from Australia, for the first time: P. luzonicus Velasquez, 1959 and P. maternus Bray & Justine, 2006 from E. coioides and Prosorhynchus platycephali (Yamaguti, 1934) Srivastava, 1938 from Ambiserrula jugosa (McCulloch) and Inegocia japonica (Cuvier) (Platycephalidae). Skrjabiniella Issaitschikow, 1928 is re-recognised for new specimens of Skrjabiniella uniporus (Ozaki, 1924) n. comb. collected from Conger cinereus Rüppell (Congridae); three additional species of Prosorhynchus are considered members of this genus, two of which are synonymised with S. uniporus.


Assuntos
Baías , Peixes/parasitologia , Trematódeos/classificação , Animais , Feminino , Masculino , Queensland , Especificidade da Espécie , Trematódeos/anatomia & histologia
19.
Syst Parasitol ; 95(8-9): 743-781, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30350301

RESUMO

Opistholebetine opecoelids are reported following examination of 1,041 individual tetraodontiform fishes, comprising 60 species and seven families, collected in Australian waters between 1986 and 2018. Nine species consistent with Opistholebes Nicoll, 1915, Heterolebes Ozaki, 1935 or Maculifer Nicoll, 1915 were recovered. However, phylogenetic analysis of sequence data, generated for some of these species, suggested that five genera, not three, are required to adequately accommodate these taxa. Thus, the concept and composition for each is revised, Pseudoheterolebes Yamaguti, 1959 nec Gupta, 1968 is resurrected and Parallelolebes n. g. is proposed. Of the nine species examined, five are new. Four new species are from fishes endemic to subtropical and temperate Australian waters for which no trematodes have previously been reported: Pa. australis n. sp. and Ps. corazonae n. sp. from the slender-spined porcupinefish Diodon nicthemerus Cuvier (Diodontidae) off Stanley, Tasmania; Pa. virilis n. sp. from the horse-shoe leatherjacket Meuschenia hippocrepis (Quoy & Gaimard) (Monacanthidae) off Stanley; and Ps. stellaglobulus n. sp. from the threebar pocupinefish Dicotylichthys punctulatus Kaup (Diodontidae) in Moreton Bay, south-east Queensland. The fifth new species is M. diodontis n. sp., collected from the spotted porcupinefish Diodon hystrix Linnaeus and the blackblotched porcupinefish D. liturosus Shaw, in tropical waters on the Great Barrier Reef. Species reported previously include the type-species of Opistholebes, O. amplicoelus Nicoll, 1915 from the rough golden puffer Lagocephalus lunaris (Bloch & Schneider) (Tetraodontidae) and the common toadfish Tetractenos hamiltoni (Richardson) (Tetraodontidae) in Moreton Bay, and three species reported for the first time from fishes in Australian waters: H. maculosus Ozaki, 1935, Pa. elongatus Ozaki, 1937 n. comb. and Ps. diodontis (Cable, 1956) n. comb., each from both D. hystrix and D. liturosus on the Great Barrier Reef. Following the revisions, Opistholebes is recognised for two species, Heterolebes for five, Maculifer for eight, Pseudoheterolebes for five and Parallelolebes for three.


Assuntos
Peixes/parasitologia , Trematódeos/fisiologia , Animais , Austrália , Filogenia , Especificidade da Espécie , Trematódeos/classificação
20.
Syst Parasitol ; 95(1): 1-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168149

RESUMO

Despite morphological and ecological inconsistencies among species, all plagioporine opecoelids with a pedunculate ventral sucker are currently considered to belong in the genus Podocotyloides Yamaguti, 1934. We revise the genus based on combined morphological and phylogenetic analyses of novel material collected from haemulid fishes in Queensland waters that we interpret to represent species congeneric with the type-species, Pod. petalophallus Yamaguti, 1934, also known from a haemulid, off Japan. Our phylogenetic analysis demonstrates polyphyly of Podocotyloides; prompts us to resurrect Pedunculacetabulum Yamaguti, 1934; and suggests that Pod. brevis Andres & Overstreet, 2013, from a deep-sea congrid in the Caribbean, and Pod. parupenei (Manter, 1963) Pritchard, 1966 and Pod. stenometra Pritchard, 1966, from mullids and chaetodontids, respectively, on the Great Barrier Reef, may each represent a distinct genus awaiting recognition. Our revised concept of Podocotyloides requires a pedunculate ventral sucker, but also a uterine sphincter prior to the genital atrium, a petalloid cirrus appendage, restriction of the vitelline follicles to the hindbody, and for the excretory vesicle to reach to the level of the ventral sucker. Of about 20 nominal species, we recognise just three in Podocotyloides (sensu stricto): Pod. petalophallus, Pod. gracilis (Yamaguti, 1952) Pritchard, 1966 and Pod. magnatestes Aleshkina & Gaevskaya, 1985. We provide new records for Pod. gracilis, and propose two new species of Podocotyloides, Pod. australis n. sp. and Pod. brevivesiculatus n. sp., and one new Pedunculacetabulum species, Ped. inopinipugnus n. sp., all from haemulids. Podocotyloides australis is morphologically indistinguishable from Pod. gracilis, and exploits the same definitive host, but is genetically and biogeographically distinct. It is thus a cryptic species, the first such opecoelid to be formally named.


Assuntos
Trematódeos/classificação , Animais , Peixes/parasitologia , Filogenia , Queensland , Especificidade da Espécie , Trematódeos/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA