RESUMO
ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.
Assuntos
Sistema Hematopoético , Doenças Mieloproliferativas-Mielodisplásicas , Transtornos Mieloproliferativos , Mielofibrose Primária , Animais , Camundongos , Humanos , Mielofibrose Primária/genética , Transtornos Mieloproliferativos/genética , Mutação , Proteínas de Transporte/genética , Proteínas Nucleares/genéticaRESUMO
BACKGROUND: Copy number alterations (CNAs) are genetic changes commonly found in cancer that involve different regions of the genome and impact cancer progression by affecting gene expression and genomic stability. Computational techniques can analyze copy number data obtained from high-throughput sequencing platforms, and various tools visualize and analyze CNAs in cancer genomes, providing insights into genetic mechanisms driving cancer development and progression. However, tools for visualizing copy number data in cancer research have some limitations. In fact, they can be complex to use and require expertise in bioinformatics or computational biology. While copy number data analysis and visualization provide insights into cancer biology, interpreting results can be challenging, and there may be multiple explanations for observed patterns of copy number alterations. RESULTS: We created Control-FREEC Viewer, a tool that facilitates effective visualization and exploration of copy number data. With Control-FREEC Viewer, experimental data can be easily loaded by the user. After choosing the reference genome, copy number data are displayed in whole genome or single chromosome view. Gain or loss on a specific gene can be found and visualized on each chromosome. Analysis parameters for subsequent sessions can be stored and images can be exported in raster and vector formats. CONCLUSIONS: Control-FREEC Viewer enables users to import and visualize data analyzed by the Control-FREEC tool, as well as by other tools sharing a similar tabular output, providing a comprehensive and intuitive graphical user interface for data visualization.
Assuntos
Neoplasias , Software , Humanos , Variações do Número de Cópias de DNA , Genoma , Biologia Computacional/métodos , Neoplasias/genéticaRESUMO
Mantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features. Antibodies against TAMs targeted CD47, a 'don't eat me' signal (DEMs) able to quench phagocytosis by TAMs within TME, with clinical effectiveness when combined with Rituximab in pretreated NHL. Recently, CD24 was found as valid DEMs in solid cancer. Since CD24 is expressed during B-cell differentiation, we investigated and identified consistent CD24 in MCL, CLL and primary human samples. Phagocytosis increased when M2-like macrophages were co-cultured with cancer cells, particularly in the case of paired DEMs blockade (i.e. anti-CD24 + anti-CD47) combined with Rituximab. Similarly, unstimulated CLL patients-derived NLCs provided increased phagocytosis when DEMs blockade occurred. Since high levels of CD24 were associated with worse survival in both MCL and CLL, anti-CD24-induced phagocytosis could be considered for future clinical use, particularly in association with other agents such as Rituximab.
Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Célula do Manto , Adulto , Humanos , Rituximab/farmacologia , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Antígeno CD47 , Recidiva Local de Neoplasia , Fagocitose , Microambiente Tumoral , Antígeno CD24RESUMO
EGFR is a protein kinase whose aberrant activity is frequently involved in the development of non-small lung cancer (NSCLC) drug resistant forms. The allosteric inhibition of this enzyme is currently one among the most attractive approaches to design and develop anticancer drugs. In a previous study, we reported the identification of a hit compound acting as type III allosteric inhibitor of the L858R/T790M double mutant EGFR. Herein, we report the design, synthesis and in vitro testing of a series of analogues of the previously identified hit with the aim of exploring the structure-activity relationships (SAR) around this scaffold. The performed analyses allowed us to identify two compounds 15 and 18 showing improved inhibition of double mutant EGFR with respect to the original hit, as well as interesting antiproliferative activity against H1975 NSCLC cancer cells expressing double mutant EGFR. The newly discovered compounds represent promising starting points for further hit-to-lead optimisation.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Proteínas Quinases , Mutação , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Resistencia a Medicamentos AntineoplásicosRESUMO
The treatment of acute myeloid leukemia (AML) presents a challenge to current therapies because of the development of drug resistance. Genetic mutation of FMS-like tyrosine kinase-3 (FLT3) is a target of interest for AML treatment, but the use of FLT3-targeting agents on AML patients has so far resulted in poor overall clinical outcomes.1 The incorporation of the boronic group in a drug scaffold could enhance the bioavailability and pharmacokinetic profile of conventional anticancer chemotypes. Boronic acids represent an intriguing and unexplored class of compounds in the context of AML, and they are only scantly reported as inhibitors of protein kinases. We identified a-triazolylboronic acids as a novel chemotype for targeting FLT3 by screening a library of structurally heterogeneous in-house boronic acids. Selected compounds show low micromolar activities on enzymatic and cellular assays, selectivity against control cell lines and a recurring binding mode in in-silico studies. Furthermore, control analogues synthesized ad hoc and lacking the boronic acid are inactive, confirming that this group is essential for the activity of the series. All together, these results suggest α-triazolylboronic acids could be a promising novel chemotype for FLT3 inhibition, laying the ground for the design of further compounds.
RESUMO
Cancer patients show heterogeneous phenotypes and very different outcomes and responses even to common treatments, such as standard chemotherapy. This state-of-affairs has motivated the need for the comprehensive characterization of cancer phenotypes and fueled the generation of large omics datasets, comprising multiple omics data reported for the same patients, which might now allow us to start deciphering cancer heterogeneity and implement personalized therapeutic strategies. In this work, we performed the analysis of four cancer types obtained from the latest efforts by The Cancer Genome Atlas, for which seven distinct omics data were available for each patient, in addition to curated clinical outcomes. We performed a uniform pipeline for raw data preprocessing and adopted the Cancer Integration via MultIkernel LeaRning (CIMLR) integrative clustering method to extract cancer subtypes. We then systematically review the discovered clusters for the considered cancer types, highlighting novel associations between the different omics and prognosis.
Assuntos
Genômica , Neoplasias , Humanos , Genômica/métodos , Multiômica , Neoplasias/genética , Genoma , Análise por ConglomeradosRESUMO
Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer's evolutionary signatures tied to distinct disease outcomes, representing "favored trajectories" of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures.
Assuntos
Genômica , Neoplasias , Humanos , Neoplasias/genética , Exoma/genética , Pacientes , TecnologiaRESUMO
We present a large-scale analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) substitutions, considering 1,585,456 high-quality raw sequencing samples, aimed at investigating the existence and quantifying the effect of mutational processes causing mutations in SARS-CoV-2 genomes when interacting with the human host. As a result, we confirmed the presence of three well-differentiated mutational processes likely ruled by reactive oxygen species (ROS), apolipoprotein B editing complex (APOBEC), and adenosine deaminase acting on RNA (ADAR). We then evaluated the activity of these mutational processes in different continental groups, showing that some samples from Africa present a significantly higher number of substitutions, most likely due to higher APOBEC activity. We finally analyzed the activity of mutational processes across different SARS-CoV-2 variants, and we found a significantly lower number of mutations attributable to APOBEC activity in samples assigned to the Omicron variant.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutação , ÁfricaRESUMO
BACKGROUND: The tawny owl (Strix aluco) is a protected species in Italy. Orphaned, injured, and ill owls often are sheltered and treated in rehabilitation centers, where hematologic and biochemical analyses would be helpful to evaluate and monitor the status of their health. OBJECTIVES: The major aim of this work was to assess hematologic and biochemical constituents together with protein electrophoretic fractions in healthy tawny owls. In addition, we compared laboratory methods for determining hemoglobin (Hgb), total protein, and albumin concentrations. METHODS: Heparinized blood samples were collected from 10 clinically healthy adult captive tawny owls between March 2001 and November 2003 for CBC, routine biochemical analysis, and protein electrophoresis. Alternate methods for Hgb (estimation as HCT/3 vs spectrophotometry), total protein (biuret vs refractometry), and albumin (bromcresol green vs electrophoresis) concentrations were compared in 34 samples from 16 unhealthy adult owls and 8 nestlings. RESULTS: Results were reported as mean, median, and range (minimum-maximum). Significant differences and poor concordance were observed between methods for Hgb, total protein, and albumin. CONCLUSIONS: Hematologic and plasma biochemical values in captive tawny owls may be useful in evaluating and monitoring the health of this species in captivity.
Assuntos
Proteínas Aviárias/análise , Análise Química do Sangue/veterinária , Proteínas Sanguíneas/análise , Eletroforese/veterinária , Estrigiformes/metabolismo , Animais , Contagem de CélulasRESUMO
BACKGROUND: Increasing interest in wildlife care leads to the need for new tools to evaluate animal health. Laboratory investigations require reference intervals against which to compare the results obtained. For common buzzards, only a few studies have been performed to establish hematologic and biochemical reference intervals. OBJECTIVES: The aim of this work was to develop reference values for routine hematologic and biochemical constituents and protein electrophoretic fractions and evaluate possible seasonal differences in values for healthy common buzzards. METHODS: Heparinized blood samples were collected from 23 captive, clinically healthy common buzzards between February 2001 and June 2003. A CBC, routine biochemical analysis, and protein electrophoresis were performed. Data distribution was assessed and results from birds sampled in spring, summer, and winter were compared. Results from alternative methods for hemoglobin (Hgb; estimated as HCT / 3 vs spectrophotometry), total protein (biuret vs refractometry), and albumin (bromcresol green vs electrophoresis) concentrations also were compared. RESULTS: Reference intervals were calculated as 10-90th percentiles. In spring and summer, total WBC and heterophil counts, and urea, total protein, prealbumin, and beta- and gamma-globulins concentrations were significantly different from winter values. Results obtained by alternative methods for Hgb, total protein, and albumin concentrations were significantly different from those obtained by standard methods, although estimated and spectrophotometric Hgb values were significantly correlated. CONCLUSIONS: The reference values obtained in this study for hematologic and plasma biochemical constituents and their seasonal variation in healthy, captive common buzzards will be useful in the clinical evaluation of these birds in rehabilitation settings.
Assuntos
Proteínas Aviárias/análise , Aves/sangue , Proteínas Sanguíneas/análise , Animais , Proteínas Aviárias/química , Proteínas Sanguíneas/química , Contagem de Células , Valores de Referência , Estações do AnoRESUMO
A 12-year-old, neutered female, Siberian husky, was presented with a 6-months history of progressive abdominal distension, anorexia, and weight loss. The dog appeared normal on physical examination except for marked abdominal distension. A fluid wave was balloted strongly suggesting an abdominal effusion. Ultrasound examination confirmed this clinical finding. Results of the CBC included mild nonregenerative anemia, with an RBC count of 4.9 × 10(6)/µL (reference interval 5.5-8.5 × 10(6)/µL), hemoglobin concentration of 12 g/dL (reference interval 12-18 g/dL), HCT of 36% (reference interval 37-55%), and reticulocytes <60,000/µL. No abnormalities in serum chemistry were detected.
Assuntos
Líquido Ascítico/patologia , Cistos Ovarianos/veterinária , Animais , Cães , Feminino , Cistos Ovarianos/patologiaRESUMO
The aim of this study was to investigate glucose tolerance, insulin secretion and insulin resistance according to smoking habits in first-degree relatives of type 2 diabetes patients, a population at high risk for developing diabetes. One thousand three hundred (646 females and 654 males) subjects underwent an oral glucose tolerance test (OGTT) to investigate their glucose metabolism and answered questionnaires about their lifestyle habits. Smoker subjects showed significant impairment compared with non-smoker subjects in 2-h post-oral glucose tolerance test (2hOGTT, 129.3 ± 40.2 vs. 117.7 ± 37.6 mg/dl, p < 0.001), the OGTT insulin sensitivity (386.3 ± 54.9 vs. 400.5 ± 53.4 ml min(-1) m(2), p < 0.01) method and the insulin sensitivity and secretion index-2 (ISSI-2, 1.7 ± 0.8 vs. 2.0 ± 1.0, p < 0.005). Metabolic syndrome (MS) was higher in the smoker than in the non-smoker group (46.5 vs. 29.7 %, p < 0001), and smokers were more sedentary than non-smokers (3.94 ± 3.77 vs. 4.86 ± 4.41 h/week, p < 0.001). Smokers showed an increased risk of impaired glucose regulation (IGR: impaired glucose tolerance or diabetes mellitus) with a hazard ratio (HR) adjusted by gender, metabolic syndrome and physical activity of 1.78, 95 % CI 1.27-2.47 (p < 0.001). The association between smoking and MS conferred a risk of IGR that was five times higher (HR 5.495, 95 % CI 4.07-7.41, p < 0.001). Smoking habit was a significant explanatory variable in a multiple forward stepwise regression analysis performed using 2hOGTT and ISSI-2 as dependent variables (p < 0.0001, R = 0.313 and p < 0.0001, R = 0.347, respectively). In conclusions, our results show that tobacco smoking is tightly associated with impairments in glucose metabolism and insulin sensitivity and insulin secretion.