Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 21(2): 322-33, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21989056

RESUMO

The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes.


Assuntos
Doenças Autoimunes/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas de Membrana/genética , Cromossomos Humanos Par 16 , Humanos , Monócitos/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
2.
Genome Med ; 7(1): 36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949529

RESUMO

BACKGROUND: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. METHODS: We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. RESULTS: We show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. CONCLUSIONS: These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA