Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 273: 120057, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001834

RESUMO

When does the mind begin? Infant psychology is mysterious in part because we cannot remember our first months of life, nor can we directly communicate with infants. Even more speculative is the possibility of mental life prior to birth. The question of when consciousness, or subjective experience, begins in human development thus remains incompletely answered, though boundaries can be set using current knowledge from developmental neurobiology and recent investigations of the perinatal brain. Here, we offer our perspective on how the development of a sensory perturbational complexity index (sPCI) based on auditory ("beep-and-zip"), visual ("flash-and-zip"), or even olfactory ("sniff-and-zip") cortical perturbations in place of electromagnetic perturbations ("zap-and-zip") might be used to address this question. First, we discuss recent studies of perinatal cognition and consciousness using techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and, in particular, magnetoencephalography (MEG). While newborn infants are the archetypal subjects for studying early human development, researchers may also benefit from fetal studies, as the womb is, in many respects, a more controlled environment than the cradle. The earliest possible timepoint when subjective experience might begin is likely the establishment of thalamocortical connectivity at 26 weeks gestation, as the thalamocortical system is necessary for consciousness according to most theoretical frameworks. To infer at what age and in which behavioral states consciousness might emerge following the initiation of thalamocortical pathways, we advocate for the development of the sPCI and similar techniques, based on EEG, MEG, and fMRI, to estimate the perinatal brain's state of consciousness.


Assuntos
Encéfalo , Estado de Consciência , Lactente , Criança , Recém-Nascido , Gravidez , Feminino , Humanos , Cognição , Magnetoencefalografia , Eletroencefalografia/métodos
2.
Hum Brain Mapp ; 43(15): 4640-4649, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35723510

RESUMO

Resting-state functional MRI is increasingly used in the clinical setting and is now included in some diagnostic guidelines for severe brain injury patients. However, to ensure high-quality data, one should mitigate fMRI-related noise typical of this population. Therefore, we aimed to evaluate the ability of different preprocessing strategies to mitigate noise-related signal (i.e., in-scanner movement and physiological noise) in functional connectivity (FC) of traumatic brain injury (TBI) patients. We applied nine commonly used denoising strategies, combined into 17 pipelines, to 88 TBI patients from the Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy clinical trial. Pipelines were evaluated by three quality control (QC) metrics across three exclusion regimes based on the participant's head movement profile. While no pipeline eliminated noise effects on FC, some pipelines exhibited relatively high effectiveness depending on the exclusion regime. Once high-motion participants were excluded, the choice of denoising pipeline becomes secondary - although this strategy leads to substantial data loss. Pipelines combining spike regression with physiological regressors were the best performers, whereas pipelines that used automated data-driven methods performed comparatively worse. In this study, we report the first large-scale evaluation of denoising pipelines aimed at reducing noise-related FC in a clinical population known to be highly susceptible to in-scanner motion and significant anatomical abnormalities. If resting-state functional magnetic resonance is to be a successful clinical technique, it is crucial that procedures mitigating the effect of noise be systematically evaluated in the most challenging populations, such as TBI datasets.


Assuntos
Lesões Encefálicas Traumáticas , Processamento de Imagem Assistida por Computador , Artefatos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Ensaios Clínicos como Assunto , Movimentos da Cabeça , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
3.
Hum Brain Mapp ; 43(6): 1804-1820, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35076993

RESUMO

Electroencephalography (EEG), easily deployed at the bedside, is an attractive modality for deriving quantitative biomarkers of prognosis and differential diagnosis in severe brain injury and disorders of consciousness (DOC). Prior work by Schiff has identified four dynamic regimes of progressive recovery of consciousness defined by the presence or absence of thalamically-driven EEG oscillations. These four predefined categories (ABCD model) relate, on a theoretical level, to thalamocortical integrity and, on an empirical level, to behavioral outcome in patients with cardiac arrest coma etiologies. However, whether this theory-based stratification of patients might be useful as a diagnostic biomarker in DOC and measurably linked to thalamocortical dysfunction remains unknown. In this work, we relate the reemergence of thalamically-driven EEG oscillations to behavioral recovery from traumatic brain injury (TBI) in a cohort of N = 38 acute patients with moderate-to-severe TBI and an average of 1 week of EEG recorded per patient. We analyzed an average of 3.4 hr of EEG per patient, sampled to coincide with 30-min periods of maximal behavioral arousal. Our work tests and supports the ABCD model, showing that it outperforms a data-driven clustering approach and may perform equally well compared to a more parsimonious categorization. Additionally, in a subset of patients (N = 11), we correlated EEG findings with functional magnetic resonance imaging (fMRI) connectivity between nodes in the mesocircuit-which has been theoretically implicated by Schiff in DOC-and report a trend-level relationship that warrants further investigation in larger studies.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Estado de Consciência , Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/etiologia , Eletroencefalografia/métodos , Humanos
4.
Ann Neurol ; 83(4): 842-853, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29572926

RESUMO

OBJECTIVE: The relationship between residual brain tissue in patients with disorders of consciousness (DOC) and the clinical condition is unclear. This observational study aimed to quantify gray (GM) and white matter (WM) atrophy in states of (altered) consciousness. METHODS: Structural T1-weighted magnetic resonance images were processed for 102 severely brain-injured and 52 healthy subjects. Regional brain volume was quantified for 158 (sub)cortical regions using Freesurfer. The relationship between regional brain volume and clinical characteristics of patients with DOC and conscious brain-injured patients was assessed using a linear mixed-effects model. Classification of patients with unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) using regional volumetric information was performed and compared to classification using cerebral glucose uptake from fluorodeoxyglucose positron emission tomography. For validation, the T1-based classifier was tested on independent datasets. RESULTS: Patients were characterized by smaller regional brain volumes than healthy subjects. Atrophy occurred faster in UWS compared to MCS (GM) and conscious (GM and WM) patients. Classification was successful (misclassification with leave-one-out cross-validation between 2% and 13%) and generalized to the independent data set with an area under the receiver operator curve of 79% (95% confidence interval [CI; 67-91.5]) for GM and 70% (95% CI [55.6-85.4]) for WM. INTERPRETATION: Brain volumetry at the single-subject level reveals that regions in the default mode network and subcortical gray matter regions, as well as white matter regions involved in long range connectivity, are most important to distinguish levels of consciousness. Our findings suggest that changes of brain structure provide information in addition to the assessment of functional neuroimaging and thus should be evaluated as well. Ann Neurol 2018;83:842-853.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estado Vegetativo Persistente/etiologia , Adulto , Análise de Variância , Atrofia/etiologia , Feminino , Fluordesoxiglucose F18/metabolismo , Escala de Resultado de Glasgow , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estado Vegetativo Persistente/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Curva ROC , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Adulto Jovem
5.
J Neurosci Res ; 96(4): 671-687, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28801920

RESUMO

In 2000, a landmark case report described the concurrent restoration of consciousness and thalamo-frontal connectivity after severe brain injury (Laureys et al., ). Being a single case however, this study could not disambiguate whether the result was specific to the restoration of consciousness per se as opposed to the return of complex cognitive function in general or simply the temporal evolution of post-injury pathophysiological events. To test whether the restoration of thalamo-cortical connectivity is specific to consciousness, 20 moderate-to-severe brain injury patients (from a recruited sample of 42) underwent resting-state functional magnetic resonance imaging within a week after injury and again six months later. As described in the single case report, we find thalamo-frontal connectivity to be increased at the chronic, compared with the acute, time-point. The increased connectivity was independent of whether patients had already recovered consciousness prior to the first assessment or whether they recovered consciousness in-between the two. Conversely, we did find an association between restoration of thalamo-frontal connectivity and the return of complex cognitive function. While we did replicate the findings of Laureys et al. (), our data suggests that the restoration of thalamo-frontal connectivity is not as tightly linked to the reemergence of consciousness per se. However, the degree to which the return of connectivity is linked to the return of complex cognitive function, or to the evolution of other time-dependent post-injury mechanisms, remains to be understood.


Assuntos
Córtex Cerebral/patologia , Estado de Consciência/fisiologia , Tálamo/patologia , Adolescente , Adulto , Idoso , Comportamento/fisiologia , Lesões Encefálicas , Córtex Cerebral/fisiologia , Cognição/fisiologia , Feminino , Escala de Coma de Glasgow , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Regeneração Nervosa , Estudos Prospectivos , Tálamo/fisiologia , Adulto Jovem
6.
Cereb Cortex ; 27(4): 2727-2738, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114177

RESUMO

In recent years, a number of brain regions and connectivity patterns have been proposed to be crucial for loss and recovery of consciousness but have not been compared in detail. In a 3 T resting-state functional magnetic resonance imaging paradigm, we test the plausibility of these different neuronal models derived from theoretical and empirical knowledge. Specifically, we assess the fit of each model to the dynamic change in effective connectivity between specific cortical and subcortical regions at different consecutive levels of propofol-induced sedation by employing spectral dynamic causal modeling. Surprisingly, our findings indicate that proposed models of impaired consciousness do not fit the observed patterns of effective connectivity. Rather, the data show that loss of consciousness, at least in the context of propofol-induced sedation, is marked by a breakdown of corticopetal projections from the globus pallidus. Effective connectivity between the globus pallidus and the ventral posterior cingulate cortex, present during wakefulness, fades in the transition from lightly sedated to full loss of consciousness and returns gradually as consciousness recovers, thereby, demonstrating the dynamic shift in brain architecture of the posterior cingulate "hub" during changing states of consciousness. These findings highlight the functional role of a previously underappreciated direct pallido-cortical connectivity in supporting consciousness.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Inconsciência/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
7.
Brain ; 138(Pt 9): 2619-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117367

RESUMO

Despite advances in resting state functional magnetic resonance imaging investigations, clinicians remain with the challenge of how to implement this paradigm on an individualized basis. Here, we assessed the clinical relevance of resting state functional magnetic resonance imaging acquisitions in patients with disorders of consciousness by means of a systems-level approach. Three clinical centres collected data from 73 patients in minimally conscious state, vegetative state/unresponsive wakefulness syndrome and coma. The main analysis was performed on the data set coming from one centre (Liège) including 51 patients (26 minimally conscious state, 19 vegetative state/unresponsive wakefulness syndrome, six coma; 15 females; mean age 49 ± 18 years, range 11-87; 16 traumatic, 32 non-traumatic of which 13 anoxic, three mixed; 35 patients assessed >1 month post-insult) for whom the clinical diagnosis with the Coma Recovery Scale-Revised was congruent with positron emission tomography scanning. Group-level functional connectivity was investigated for the default mode, frontoparietal, salience, auditory, sensorimotor and visual networks using a multiple-seed correlation approach. Between-group inferential statistics and machine learning were used to identify each network's capacity to discriminate between patients in minimally conscious state and vegetative state/unresponsive wakefulness syndrome. Data collected from 22 patients scanned in two other centres (Salzburg: 10 minimally conscious state, five vegetative state/unresponsive wakefulness syndrome; New York: five minimally conscious state, one vegetative state/unresponsive wakefulness syndrome, one emerged from minimally conscious state) were used to validate the classification with the selected features. Coma Recovery Scale-Revised total scores correlated with key regions of each network reflecting their involvement in consciousness-related processes. All networks had a high discriminative capacity (>80%) for separating patients in a minimally conscious state and vegetative state/unresponsive wakefulness syndrome. Among them, the auditory network was ranked the most highly. The regions of the auditory network which were more functionally connected in patients in minimally conscious state compared to vegetative state/unresponsive wakefulness syndrome encompassed bilateral auditory and visual cortices. Connectivity values in these three regions discriminated congruently 20 of 22 independently assessed patients. Our findings point to the significance of preserved abilities for multisensory integration and top-down processing in minimal consciousness seemingly supported by auditory-visual crossmodal connectivity, and promote the clinical utility of the resting paradigm for single-patient diagnostics.


Assuntos
Encéfalo/irrigação sanguínea , Transtornos da Consciência/patologia , Vias Neurais/irrigação sanguínea , Estado Vegetativo Persistente/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Criança , Coma/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia , Oxigênio/sangue , Descanso , Índice de Gravidade de Doença , Adulto Jovem
8.
Neuroimage ; 110: 101-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25620493

RESUMO

The intrinsic connectivity of the default mode network has been associated with the level of consciousness in patients with severe brain injury. Especially medial parietal regions are considered to be highly involved in impaired consciousness. To better understand what aspect of this intrinsic architecture is linked to consciousness, we applied spectral dynamic causal modeling to assess effective connectivity within the default mode network in patients with disorders of consciousness. We included 12 controls, 12 patients in minimally conscious state and 13 in vegetative state in this study. For each subject, we first defined the four key regions of the default mode network employing a subject-specific independent component analysis approach. The resulting regions were then included as nodes in a spectral dynamic causal modeling analysis in order to assess how the causal interactions across these regions as well as the characteristics of neuronal fluctuations change with the level of consciousness. The resulting pattern of interaction in controls identified the posterior cingulate cortex as the main driven hub with positive afferent but negative efferent connections. In patients, this pattern appears to be disrupted. Moreover, the vegetative state patients exhibit significantly reduced self-inhibition and increased oscillations in the posterior cingulate cortex compared to minimally conscious state and controls. Finally, the degree of self-inhibition and strength of oscillation in this region is correlated with the level of consciousness. These findings indicate that the equilibrium between excitatory connectivity towards posterior cingulate cortex and its feedback projections is a key aspect of the relationship between alterations in consciousness after severe brain injury and the intrinsic functional architecture of the default mode network. This impairment might be principally due to the disruption of the mechanisms underlying self-inhibition and neuronal oscillations in the posterior cingulate cortex.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos da Consciência/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Estado Vegetativo Persistente/fisiopatologia
9.
Hum Brain Mapp ; 35(4): 1668-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23670980

RESUMO

The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity.


Assuntos
Tomada de Decisões/fisiologia , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Leitura , Reconhecimento Psicológico/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fonética , Estimulação Luminosa , Adulto Jovem
10.
Brain Sci ; 12(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447960

RESUMO

The promotion of recovery in patients who have entered a disorder of consciousness (DOC; e.g., coma or vegetative states) following severe brain injury remains an enduring medical challenge despite an ever-growing scientific understanding of these conditions. Indeed, recent work has consistently implicated altered cortical modulation by deep brain structures (e.g., the thalamus and the basal ganglia) following brain damage in the arising of, and recovery from, DOCs. The (re)emergence of low-intensity focused ultrasound (LIFU) neuromodulation may provide a means to selectively modulate the activity of deep brain structures noninvasively for the study and treatment of DOCs. This technique is unique in its combination of relatively high spatial precision and noninvasive implementation. Given the consistent implication of the thalamus in DOCs and prior results inducing behavioral recovery through invasive thalamic stimulation, here we applied ultrasound to the central thalamus in 11 acute DOC patients, measured behavioral responsiveness before and after sonication, and applied functional MRI during sonication. With respect to behavioral responsiveness, we observed significant recovery in the week following thalamic LIFU compared with baseline. With respect to functional imaging, we found decreased BOLD signals in the frontal cortex and basal ganglia during LIFU compared with baseline. In addition, we also found a relationship between altered connectivity of the sonicated thalamus and the degree of recovery observed post-LIFU.

11.
Sci Rep ; 11(1): 6100, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731821

RESUMO

Deep brain nuclei are integral components of large-scale circuits mediating important cognitive and sensorimotor functions. However, because they fall outside the domain of conventional non-invasive neuromodulatory techniques, their study has been primarily based on neuropsychological models, limiting the ability to fully characterize their role and to develop interventions in cases where they are damaged. To address this gap, we used the emerging technology of non-invasive low-intensity focused ultrasound (LIFU) to directly modulate left lateralized basal ganglia structures in healthy volunteers. During sonication, we observed local and distal decreases in blood oxygenation level dependent (BOLD) signal in the targeted left globus pallidus (GP) and in large-scale cortical networks. We also observed a generalized decrease in relative perfusion throughout the cerebrum following sonication. These results show, for the first time using functional MRI data, the ability to modulate deep-brain nuclei using LIFU while measuring its local and global consequences, opening the door for future applications of subcortical LIFU.


Assuntos
Globo Pálido , Imageamento por Ressonância Magnética , Terapia por Ultrassom , Adolescente , Adulto , Feminino , Globo Pálido/irrigação sanguínea , Globo Pálido/diagnóstico por imagem , Humanos , Masculino
12.
Neurosci Conscious ; 2020(1): niaa008, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551138

RESUMO

An increasing amount of studies suggest that brain dynamics measured with resting-state functional magnetic resonance imaging (fMRI) are related to the state of consciousness. However, the challenge of investigating neuronal correlates of consciousness is the confounding interference between (recovery of) consciousness and behavioral responsiveness. To address this issue, and validate the interpretation of prior work linking brain dynamics and consciousness, we performed a longitudinal fMRI study in patients recovering from coma. Patients were assessed twice, 6 months apart, and assigned to one of two groups. One group included patients who were unconscious at the first assessment but regained consciousness and improved behavioral responsiveness by the second assessment. The other group included patients who were already conscious and improved only behavioral responsiveness. While the two groups were matched in terms of the average increase in behavioral responsiveness, only one group experienced a categorical change in their state of consciousness allowing us to partially dissociate consciousness and behavioral responsiveness. We find the variance in network metrics to be systematically different across states of consciousness, both within and across groups. Specifically, at the first assessment, conscious patients exhibited significantly greater variance in network metrics than unconscious patients, a difference that disappeared once all patients had recovered consciousness. Furthermore, we find a significant increase in dynamics for patients who regained consciousness over time, but not for patients who only improved responsiveness. These findings suggest that changes in brain dynamics are indeed linked to the state of consciousness and not just to a general level of behavioral responsiveness.

13.
Psychiatry Res Neuroimaging ; 292: 5-12, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31472416

RESUMO

Judgments about another person's visual perspective are impaired when the self-perspective is inconsistent with the other-perspective. This is a robust finding in healthy samples as well as in schizophrenia (SZ). Studies show evidence for the existence of a reverse effect, where an inconsistent other-perspective impairs the self-perspective. Such spontaneous perspective taking processes are not yet explored in SZ. In the current fMRI experiment, 24 healthy and 24 schizophrenic participants performed a visual perspective taking task in the scanner. Either a social or a non-social stimulus was presented and their visual perspectives were consistent or inconsistent with the self-perspective of the participant. We replicated previous findings showing that healthy participants show increased reaction times when the human avatar's perspective is inconsistent to the self-perspective. Patients with SZ, however, did not show this effect, neither in the social nor in the non-social condition. BOLD responses revealed similar patterns in occipital areas and group differences were identified in the middle occipital gyrus. These findings suggest that patients with SZ are less likely to spontaneously compute the visual perspectives of others.


Assuntos
Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Esquizofrenia/diagnóstico por imagem , Psicologia do Esquizofrênico , Percepção Visual/fisiologia , Adulto , Humanos , Julgamento/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Esquizofrenia/fisiopatologia , Adulto Jovem
17.
Brain Connect ; 6(7): 572-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27239684

RESUMO

Menstrual cycle-dependent changes have been reported for a variety of functions, including cognition, attention, emotion, inhibition, and perception. For several of these functions, an effect of hormonal contraceptives has also been discussed. Cognitive, attentional, emotional, inhibitory, and perceptual functions have been linked to distinct intrinsic connectivity networks during the resting state. However, changes in resting-state connectivity across the menstrual cycle phase and due to hormonal contraceptive use have only been investigated in two selected networks and without controlling for the type of hormonal contraceptives. In the present study, we demonstrate menstrual cycle and hormonal contraceptive-dependent changes in several intrinsic connectivity networks, including networks that have been related to emotion processing, olfaction, audition, vision, coordination, and two lateralized frontoparietal networks related to a variety of cognitive functions. These changes parallel behavioral changes in the functions associated with these networks. Changes in connectivity and changes in behavior occur during the same cycle phases. Furthermore, hormonal contraceptive-dependent effects were observed in the same networks and same target sites as menstrual cycle-related changes and were dependent on the androgenicity of the progestin component contained in the hormonal contraceptive.


Assuntos
Encéfalo/fisiologia , Anticoncepcionais Orais Hormonais/farmacologia , Hormônios Esteroides Gonadais/sangue , Ciclo Menstrual , Adulto , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Estradiol/sangue , Feminino , Humanos , Imageamento por Ressonância Magnética , Ciclo Menstrual/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Progesterona/sangue , Testosterona/sangue , Adulto Jovem
19.
Wien Klin Wochenschr ; 114(12): 462-7, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12422582

RESUMO

46, XY partial gonadal dysgenesis is a rare condition characterized by a varying degree of testicular dysgenesis, ambiguous genitalia, and usually absence of regression of Müllerian structures. The management of patients with these disorders warrants revisiting, owing to recent molecular biological findings and to reports on the long-term outcome of individuals with ambiguous genitalia. We report on a patient with 46, XY chromosomes, presence of the "sex-determining region of Y chromosome" (SRY) gene, scrotal gonads, fallopain tubes, uterus, vagina, and ambiguous genitalia with a penisoid, perineal hypospadia and sinus urogenitalis. Gonadal biopsy revealed virtually normal testicular tissue in both gonads. Removal of the gonads during surgery for a cystic adnex tumor revealed clear signs of partial gonadal dysgenesis. The decision to raise the child as a male was made by parents and physicians caring for the patient. Administration of testosterone, removal of the uterus and adnexes, in addition to repair of the hypospadia permitted an almost normal penis to be formed with normal male micturition. In the management of affected patients it has to be considered that establishing the diagnosis may be extremely tricky, even with the use of gonadal biopsies. The decision on sex assignment may be even more difficult, since future gender identity, limitations of genital reconstructive surgery and the potential for development of gonadal tumors have to be taken into consideration. While in the past, female sex assignment was commonly recommended for such patients, raising them in a male gender role is now considered. Parents should be involved in the decision that is ultimately based on extensive analysis of the individual case.


Assuntos
Disgenesia Gonadal 46 XY/diagnóstico , Hormônios Esteroides Gonadais/sangue , Pré-Escolar , Seguimentos , Disgenesia Gonadal 46 XY/genética , Disgenesia Gonadal 46 XY/cirurgia , Gônadas/patologia , Gônadas/cirurgia , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Caracteres Sexuais , Testosterona/administração & dosagem
20.
Front Hum Neurosci ; 8: 225, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860461

RESUMO

It is an established finding that neuronal activity is decreased for repeated stimuli. Recent studies revealed that repetition suppression (RS) effects are altered by manipulating the probability with which stimuli are repeated. RS for faces is more pronounced when the probability of repetition is high than when it is low. This response pattern is interpreted with reference to the predictive coding (PC) account, which assumes that RS is influenced by top-down expectations. Recent findings challenge the generality of PC accounts of RS by showing repetition probability does not modulate RS for other visual stimuli than faces. However, a number of findings on visual processing are in line with PC. Thus, the influence of repetition probability on RS effects during object processing requires careful reinvestigations. In the present fMRI study, object pictures were presented in a high (75%) or low (25%) repetition probability context. We found increased RS in the high-probability context compared to the low-probability context in the left lateral occipital complex (LOC). The dorsal-caudal and the ventral-anterior subdivisions of the LOC revealed similar neuronal responses. These results indicate that repetition probability effects can be found for other visual objects than faces and provide evidence in favor of the PC account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA