Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944331

RESUMO

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Assuntos
Imunodeficiência Combinada Severa , Linfócitos T , Humanos , Animais , Camundongos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Edição de Genes , Camundongos SCID , Complexo CD3 , Receptores de Antígenos de Linfócitos T/genética
2.
Nature ; 630(8016): 412-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839950

RESUMO

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas , Proteínas Nucleares , Animais , Feminino , Humanos , Masculino , Camundongos , Células Cultivadas , Endocitose , Endossomos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fígado/citologia , Fígado/metabolismo , Fígado/embriologia , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Análise da Expressão Gênica de Célula Única
3.
Nat Immunol ; 16(12): 1282-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502406

RESUMO

To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.


Assuntos
Linfócitos B/metabolismo , Linhagem da Célula/genética , Células Progenitoras Linfoides/metabolismo , RNA Longo não Codificante/genética , Linfócitos T/metabolismo , Transcriptoma , Teorema de Bayes , Células da Medula Óssea/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Timo/citologia , Timo/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(21): e2221116120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192158

RESUMO

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.


Assuntos
Neoplasias , Precursores de RNA , Masculino , Humanos , Precursores de RNA/metabolismo , Processamento Alternativo , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T , Epitopos de Linfócito T , Imunoterapia , Antígenos de Neoplasias , Peptídeos/metabolismo , Neoplasias/genética , Neoplasias/terapia
5.
Nature ; 576(7786): 281-286, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31776511

RESUMO

Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation1. Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or progenitor cells (HSPCs) in culture, whereas stabilizing MLLT3 expression in culture enabled more than 12-fold expansion of transplantable HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Similar to endogenous MLLT3, overexpressed MLLT3 localized to active promoters in HSPCs, sustained levels of H3K79me2 and protected the HSC transcriptional program in culture. MLLT3 thus acts as HSC maintenance factor that links histone reader and modifying activities to modulate HSC gene expression, and may provide a promising approach to expand HSCs for transplantation.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Proteínas Nucleares/genética , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878026

RESUMO

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Assuntos
Fosfatase Ácida , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T , Fosfatase Ácida/metabolismo , Antígenos de Neoplasias/metabolismo , Epitopos , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Leucócitos Mononucleares , Neoplasias/imunologia , Peptídeos , Receptores de Antígenos de Linfócitos T/metabolismo
7.
N Engl J Med ; 384(21): 2002-2013, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33974366

RESUMO

BACKGROUND: Severe combined immunodeficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) is a rare and life-threatening primary immunodeficiency. METHODS: We treated 50 patients with ADA-SCID (30 in the United States and 20 in the United Kingdom) with an investigational gene therapy composed of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with a self-inactivating lentiviral vector encoding human ADA. Data from the two U.S. studies (in which fresh and cryopreserved formulations were used) at 24 months of follow-up were analyzed alongside data from the U.K. study (in which a fresh formulation was used) at 36 months of follow-up. RESULTS: Overall survival was 100% in all studies up to 24 and 36 months. Event-free survival (in the absence of reinitiation of enzyme-replacement therapy or rescue allogeneic hematopoietic stem-cell transplantation) was 97% (U.S. studies) and 100% (U.K. study) at 12 months; 97% and 95%, respectively, at 24 months; and 95% (U.K. study) at 36 months. Engraftment of genetically modified HSPCs persisted in 29 of 30 patients in the U.S. studies and in 19 of 20 patients in the U.K. study. Patients had sustained metabolic detoxification and normalization of ADA activity levels. Immune reconstitution was robust, with 90% of the patients in the U.S. studies and 100% of those in the U.K. study discontinuing immunoglobulin-replacement therapy by 24 months and 36 months, respectively. No evidence of monoclonal expansion, leukoproliferative complications, or emergence of replication-competent lentivirus was noted, and no events of autoimmunity or graft-versus-host disease occurred. Most adverse events were of low grade. CONCLUSIONS: Treatment of ADA-SCID with ex vivo lentiviral HSPC gene therapy resulted in high overall and event-free survival with sustained ADA expression, metabolic correction, and functional immune reconstitution. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01852071, NCT02999984, and NCT01380990.).


Assuntos
Agamaglobulinemia/terapia , Terapia Genética/métodos , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Lentivirus/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/deficiência , Adolescente , Criança , Pré-Escolar , Terapia Genética/efeitos adversos , Humanos , Lactente , Contagem de Linfócitos , Intervalo Livre de Progressão , Estudos Prospectivos , Transplante Autólogo
8.
Nat Immunol ; 13(10): 963-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941246

RESUMO

Expression of the cell-surface antigen CD10 has long been used to define the lymphoid commitment of human cells. Here we report a unique lymphoid-primed population in human bone marrow that was generated from hematopoietic stem cells (HSCs) before onset of the expression of CD10 and commitment to the B cell lineage. We identified this subset by high expression of the homing molecule L-selectin (CD62L). CD10(-)CD62L(hi) progenitors had full lymphoid and monocytic potential but lacked erythroid potential. Gene-expression profiling placed the CD10(-)CD62L(hi) population at an intermediate stage of differentiation between HSCs and lineage-negative (Lin(-)) CD34(+)CD10(+) progenitors. CD62L was expressed on immature thymocytes, and its ligands were expressed at the cortico-medullary junction of the thymus, which suggested a possible role for this molecule in homing to the thymus. Our studies identify the earliest stage of lymphoid priming in human bone marrow.


Assuntos
Células da Medula Óssea/imunologia , Células-Tronco Hematopoéticas/metabolismo , Selectina L/biossíntese , Neprilisina/biossíntese , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Antígenos CD7/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Humanos , Timócitos/imunologia , Timócitos/metabolismo , Timo/metabolismo , Regulação para Cima
9.
J Immunol ; 205(9): 2423-2436, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32989093

RESUMO

Neonatal life marks the apogee of murine thymic growth. Over the first few days after birth, growth slows and the murine thymus switches from fetal to adult morphology and function; little is known about the cues driving this dramatic transition. In this study, we show for the first time (to our knowledge) the critical role of vascular endothelial growth factor (VEGF) on thymic morphogenesis beyond its well-known role in angiogenesis. During a brief window a few days after birth, VEGF inhibition induced rapid and profound remodeling of the endothelial, mesenchymal and epithelial thymic stromal compartments, mimicking changes seen during early adult maturation. Rapid transcriptional changes were seen in each compartment after VEGF inhibition, including genes involved in migration, chemotaxis, and cell adhesion as well as induction of a proinflammatory and proadipogenic signature in endothelium, pericytes, and mesenchyme. Thymocyte numbers fell subsequent to the stromal changes. Expression patterns and functional blockade of the receptors VEGFR2 and NRP1 demonstrated that VEGF mediates its pleiotropic effects through distinct receptors on each microenvironmental compartment of the developing mouse thymus.


Assuntos
Timo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Endotélio/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Pericitos/metabolismo , Timócitos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Nat Methods ; 14(5): 521-530, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28369043

RESUMO

Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCR-αß+ single-positive CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vß expression, consistent with allelic exclusion of Vß-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.


Assuntos
Órgãos Artificiais , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Organoides/citologia , Linfócitos T/citologia , Timo/citologia , Biotecnologia/métodos , Células-Tronco Hematopoéticas/imunologia , Humanos , Organoides/imunologia , Células-Tronco/citologia , Células-Tronco/imunologia , Linfócitos T/imunologia , Timo/imunologia
11.
Stem Cells ; 36(11): 1663-1675, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30004607

RESUMO

Myeloid malignancies, including myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia, are characterized by abnormal proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). Reports on analysis of bone marrow samples from patients have revealed a high incidence of mutations in splicing factors in early stem and progenitor cell clones, but the mechanisms underlying transformation of HSPCs harboring these mutations remain unknown. Using ex vivo cultures of primary human CD34+ cells as a model, we find that mutations in splicing factors SRSF2 and U2AF1 exert distinct effects on proliferation and differentiation of HSPCs. SRSF2 mutations cause a dramatic inhibition of proliferation via a G2-M phase arrest and induction of apoptosis. U2AF1 mutations, conversely, do not significantly affect proliferation. Mutations in both SRSF2 and U2AF1 cause abnormal differentiation by skewing granulo-monocytic differentiation toward monocytes but elicit diverse effects on megakaryo-erythroid differentiation. The SRSF2 mutations skew differentiation toward megakaryocytes whereas U2AF1 mutations cause an increase in the erythroid cell populations. These distinct functional consequences indicate that SRSF2 and U2AF1 mutations have cell context-specific effects and that the generation of myeloid disease phenotype by mutations in the genes coding these two proteins likely involves different intracellular mechanisms. Stem Cells 2018;36:1663-1675.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Mieloide Aguda/genética , Fatores de Processamento de RNA/metabolismo , Células-Tronco/metabolismo , Condicionamento Pré-Transplante/métodos , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Mutação
12.
Stem Cells ; 34(5): 1239-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26934332

RESUMO

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250.


Assuntos
Diferenciação Celular , Técnicas Genéticas , Mesoderma/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD/metabolismo , Linhagem Celular , Linhagem da Célula , Separação Celular , Células Clonais , Citometria de Fluxo , Humanos , Lentivirus/metabolismo , Camundongos
13.
J Immunol ; 192(11): 5050-8, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24771849

RESUMO

Despite the power of model systems to reveal basic immunologic mechanisms, critical differences exist between species that necessitate the direct study of human cells. Illustrating this point is the difference in phenotype between patients with SCID caused by mutations affecting the common γ-chain (γc) cytokine signaling pathway and mice with similar mutations. Although in both species, null mutations in either IL-2RG (which encodes γc), or its direct downstream signaling partner JAK3, result in T and NK cell deficiency, an associated B cell deficiency is seen in mice but not in humans with these genetic defects. In this study, we applied recent data that have revised our understanding of the earliest stages of lymphoid commitment in human bone marrow (BM) to determine the requirement for signaling through IL-2RG and JAK3 in normal development of human lymphoid progenitors. BM samples from SCID patients with IL-2RG (n = 3) or JAK3 deficiency (n = 2), which produce similar "T-NK-B+" clinical phenotypes, were compared with normal BM and umbilical cord blood as well as BM from children on enzyme treatment for adenosine deaminase-deficient SCID (n = 2). In both IL-2RG- and JAK3-SCID patients, the early stages of lymphoid commitment from hematopoietic stem cells were present with development of lymphoid-primed multipotent progenitors, common lymphoid progenitors and B cell progenitors, normal expression patterns of IL-7RA and TLSPR, and the DNA recombination genes DNTT and RAG1. Thus, in humans, signaling through the γc pathway is not required for prethymic lymphoid commitment or for DNA rearrangement.


Assuntos
Subunidade gama Comum de Receptores de Interleucina/imunologia , Linfócitos/imunologia , Imunodeficiência Combinada Severa/imunologia , Transdução de Sinais/imunologia , Adulto , Animais , Feminino , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Janus Quinase 3/genética , Janus Quinase 3/imunologia , Linfócitos/patologia , Masculino , Camundongos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Transdução de Sinais/genética
14.
Mol Cancer ; 14: 214, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26694754

RESUMO

BACKGROUND: A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. RESULTS: Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. CONCLUSIONS: Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/fisiologia , Transcriptoma
15.
Biol Blood Marrow Transplant ; 21(3): 440-4, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25459642

RESUMO

Blood and marrow transplantation (BMT) is a standard curative therapy for patients with nonmalignant genetic diseases. Myeloablative conditioning has been associated with significant regimen-related toxicity (RRT), whereas reduced-intensity conditioning regimens have been associated with graft failure. In this prospective pilot trial conducted at 2 centers between 2006 and 2013, we report the outcome of 22 patients with nonmalignant genetic diseases who were conditioned with a novel reduced-toxicity regimen: i.v. busulfan (16 mg/kg), alemtuzumab (52 mg/m(2)), fludarabine (140 mg/m(2)), and cyclophosphamide (105 mg/kg). The median age of the study population was 3.5 years (range, 5 months to 26 years). No cases of sinusoidal obstruction syndrome, severe or chronic graft-versus-host disease (GVHD), or primary graft failure were reported. Median time to neutrophil engraftment (>500 cells/µL) and platelet engraftment (>20K cells/µL) were 19 (range, 12 to 50) and 23.5 (range, 14 to 134) days, respectively. The median length of follow-up was 3 years (range, .2 to 6.3). The overall survival rates were 95% at 100 days (95% confidence interval, .72 to .99) and 90% at 6 years (95% confidence interval, .68 to .98). RRT and chronic GVHD are significant barriers to BMT for patients with nonmalignant genetic diseases. This alemtuzumab-based reduced-toxicity regimen appears to be promising with durable engraftment, effective cure of clinical disease, low rates of RRT, and no observed chronic GVHD.


Assuntos
Transplante de Medula Óssea , Doenças Genéticas Inatas/mortalidade , Doenças Genéticas Inatas/terapia , Sobrevivência de Enxerto , Agonistas Mieloablativos/administração & dosagem , Condicionamento Pré-Transplante , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Seguimentos , Rejeição de Enxerto/mortalidade , Rejeição de Enxerto/prevenção & controle , Humanos , Lactente , Masculino , Projetos Piloto , Taxa de Sobrevida
16.
Blood ; 121(15): 2891-901, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23412095

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) emerge and develop adjacent to blood vessel walls in the yolk sac, aorta-gonad-mesonephros region, embryonic liver, and fetal bone marrow. In adult mouse bone marrow, perivascular cells shape a "niche" for HSPCs. Mesenchymal stem/stromal cells (MSCs), which support hematopoiesis in culture, are themselves derived in part from perivascular cells. In order to define their direct role in hematopoiesis, we tested the ability of purified human CD146(+) perivascular cells, as compared with unfractionated MSCs and CD146(-) cells, to sustain human HSPCs in coculture. CD146(+) perivascular cells support the long-term persistence, through cell-to-cell contact and at least partly via Notch activation, of human myelolymphoid HSPCs able to engraft primary and secondary immunodeficient mice. Conversely, unfractionated MSCs and CD146(-) cells induce differentiation and compromise ex vivo maintenance of HSPCs. Moreover, CD146(+) perivascular cells express, natively and in culture, molecular markers of the vascular hematopoietic niche. Unexpectedly, this dramatic, previously undocumented ability to support hematopoietic stem cells is present in CD146(+) perivascular cells extracted from the nonhematopoietic adipose tissue.


Assuntos
Vasos Sanguíneos/fisiologia , Antígeno CD146/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Adulto , Animais , Antígenos CD34/metabolismo , Vasos Sanguíneos/citologia , Western Blotting , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Comunicação Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Receptores Notch/genética , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Serrate-Jagged
17.
Blood ; 121(10): 1814-8, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23319569

RESUMO

Bone marrow (BM) provides chemoprotection for acute lymphoblastic leukemia (ALL) cells, contributing to lack of efficacy of current therapies. Integrin alpha4 (alpha4) mediates stromal adhesion of normal and malignant B-cell precursors, and according to gene expression analyses from 207 children with minimal residual disease, is highly associated with poorest outcome. We tested whether interference with alpha4-mediated stromal adhesion might be a new ALL treatment. Two models of leukemia were used, one genetic (conditional alpha4 ablation of BCR-ABL1 [p210(+)] leukemia) and one pharmacological (anti-functional alpha4 antibody treatment of primary ALL). Conditional deletion of alpha4 sensitized leukemia cell to nilotinib. Adhesion of primary pre-B ALL cells was alpha4-dependent; alpha4 blockade sensitized primary ALL cells toward chemotherapy. Chemotherapy combined with Natalizumab prolonged survival of NOD/SCID recipients of primary ALL, suggesting adjuvant alpha4 inhibition as a novel strategy for pre-B ALL.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/fisiologia , Integrina alfa4/química , Neoplasia Residual/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Adesão Celular , Criança , Citometria de Fluxo , Humanos , Integrases/metabolismo , Integrina alfa4/genética , Integrina alfa4/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Natalizumab , Neoplasia Residual/metabolismo , Neoplasia Residual/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia
18.
Stem Cells ; 32(9): 2386-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24801626

RESUMO

A system that allows manipulation of the human thymic microenvironment is needed both to elucidate the extrinsic mechanisms that control human thymopoiesis and to develop potential cell therapies for thymic insufficiency. In this report, we developed an implantable thymic microenvironment composed of two human thymic stroma populations critical for thymopoiesis; thymic epithelial cells (TECs) and thymic mesenchyme (TM). TECs and TM from postnatal human thymi were cultured in specific conditions, allowing cell expansion and manipulation of gene expression, before reaggregation into a functional thymic unit. Human CD34+ hematopoietic stem and progenitor cells (HSPC) differentiated into T cells in the aggregates in vitro and in vivo following inguinal implantation of aggregates in immune deficient mice. Cord blood HSPC previously engrafted into murine bone marrow (BM), migrated to implants, and differentiated into human T cells with a broad T cell receptor repertoire. Furthermore, lentiviral-mediated expression of vascular endothelial growth factor in TM enhanced implant size and function and significantly increased thymocyte production. These results demonstrate an in vivo system for the generation of T cells from human HSPC and represent the first model to allow manipulation of gene expression and cell composition in the microenvironment of the human thymus.


Assuntos
Timo/citologia , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células/fisiologia , Microambiente Celular/fisiologia , Expressão Gênica , Humanos , Linfopoese/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Timo/efeitos dos fármacos
19.
Stem Cells ; 32(6): 1503-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24677652

RESUMO

Unlimited self renewal capacity and differentiation potential make human pluripotent stem cells (PSC) a promising source for the ex vivo manufacture of red blood cells (RBCs) for safe transfusion. Current methods to induce erythropoiesis from PSC suffer from low yields of RBCs, most of which are immature and contain embryonic and fetal rather than adult hemoglobins. We have previously shown that homodimerization of the intracellular component of MPL (ic-MPL) induces erythropoiesis from human cord blood progenitors. The goal of this study was to investigate the potential of ic-MPL dimerization to induce erythropoiesis from human embryonic stem cells (hESCs) and to identify the signaling pathways activated by this strategy. We present here the evidence that ic-MPL dimerization induces erythropoietin (EPO)-independent erythroid differentiation from hESC by inducing the generation of erythroid progenitors and by promoting more efficient erythroid maturation with increased RBC enucleation as well as increased gamma:epsilon globin ratio and production of beta-globin protein. ic-MPL dimerization is significantly more potent than EPO in inducing erythropoiesis, and its effect is additive to EPO. Signaling studies show that dimerization of ic-MPL, unlike stimulation of the wild type MPL receptor, activates AKT in the absence of JAK2/STAT5 signaling. AKT activation upregulates GATA-1 and FOXO3 transcriptional pathways with resulting inhibition of apoptosis, modulation of cell cycle, and enhanced maturation of erythroid cells. These findings open up potential new targets for the generation of therapeutically relevant RBC products from hPSC.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Eritropoese , Eritropoetina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Trombopoetina/química , Receptores de Trombopoetina/metabolismo
20.
Am J Hematol ; 90(11): 1021-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26242764

RESUMO

Hematopoietic stem cell transplantation (HSCT) with matched unrelated donors (MUD), offers potentially curative therapy for patients with non-malignant genetic diseases. In this pilot study conducted from 2006 to 2014, we report the outcomes of 15 patients with non-malignant genetic diseases who received a myeloablative regimen with a reduced cyclophosphamide dose, adjunctive serotherapy and MUD HSCT [intravenous alemtuzumab (52 mg/m(2) ), busulfan (16 mg/kg), fludarabine (140mg/m(2) ), and cyclophosphamide (105 mg/kg)]. Graft-versus-host-disease (GVHD) prophylaxis consisted of tacrolimus/cyclosporine and methylprednisolone. Median (range) time to neutrophil engraftment (>500 cells/µL) and platelet engraftment (>20,000/mm(3) ) were 15 (12-28) and 25 (17-30) days, respectively. At a median follow-up of 2 (0.2-5.4) years, the overall survival (OS) was 93.3% (95% CI: 0.61-0.99) and disease-free survival (DFS) was 73.3% (95% CI: 0.44-0.89). Among this small sample, earlier alemtuzumab clearance was significantly associated with graft rejection (P = 0.047), earlier PHA response (P = 0.009) and a trend toward earlier recovery of recent thymic emigrants (RTE) (P = 0.06). This regimen was associated with durable donor engraftment and relatively low rates of regimen related toxicity (RRT); future alemtuzumab pharmacokinetic studies may improve outcomes, by allowing targeted alemtuzumab clearance to reduce graft rejection and promote more rapid immune reconstitution.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Doenças Genéticas Inatas/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas , Agonistas Mieloablativos/uso terapêutico , Adolescente , Alemtuzumab , Bussulfano/uso terapêutico , Criança , Pré-Escolar , Ciclofosfamida/uso terapêutico , Ciclosporina/uso terapêutico , Esquema de Medicação , Feminino , Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/mortalidade , Doenças Genéticas Inatas/patologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/mortalidade , Rejeição de Enxerto/patologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Antígenos HLA/genética , Humanos , Imunossupressores/uso terapêutico , Lactente , Masculino , Metilprednisolona/uso terapêutico , Projetos Piloto , Análise de Sobrevida , Tacrolimo/uso terapêutico , Condicionamento Pré-Transplante , Transplante Homólogo , Doadores não Relacionados , Vidarabina/análogos & derivados , Vidarabina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA