RESUMO
Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.
Assuntos
Aedes , Anopheles , Repelentes de Insetos , Animais , Humanos , Ácidos Carboxílicos/farmacologia , Odorantes/análise , Repelentes de Insetos/farmacologia , Repelentes de Insetos/análiseRESUMO
Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner. We find that ablation of LDHA in a naïve B cell did not profoundly affect its ability to undergo a bacterial lipopolysaccharide-induced extrafollicular B cell response. On the other hand, LDHA-deleted naïve B cells had a severe defect in their capacities to form GCs and mount GC-dependent antibody responses. In addition, loss of LDHA in T cells severely compromised B cell-dependent immune responses. Strikingly, when LDHA was deleted in activated, as opposed to naïve, B cells, there were only minimal effects on the GC reaction and in the generation of high-affinity antibodies. These findings strongly suggest that naïve and activated B cells have distinct metabolic requirements that are further regulated by niche and cellular interactions.
Assuntos
Linfócitos B , Centro Germinativo , Linfócitos T , Ativação Linfocitária , Comunicação CelularRESUMO
The majority of tumor-infiltrating T cells exhibit a terminally exhausted phenotype, marked by a loss of self-renewal capacity. How repetitive antigenic stimulation impairs T cell self-renewal remains poorly defined. Here, we show that persistent antigenic stimulation impaired ADP-coupled oxidative phosphorylation. The resultant bioenergetic compromise blocked proliferation by limiting nucleotide triphosphate synthesis. Inhibition of mitochondrial oxidative phosphorylation in activated T cells was sufficient to suppress proliferation and upregulate genes linked to T cell exhaustion. Conversely, prevention of mitochondrial oxidative stress during chronic T cell stimulation allowed sustained T cell proliferation and induced genes associated with stem-like progenitor T cells. As a result, antioxidant treatment enhanced the anti-tumor efficacy of chronically stimulated T cells. These data reveal that loss of ATP production through oxidative phosphorylation limits T cell proliferation and effector function during chronic antigenic stimulation. Furthermore, treatments that maintain redox balance promote T cell self-renewal and enhance anti-tumor immunity.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Mitocôndrias/metabolismo , Neoplasias/imunologia , Difosfato de Adenosina/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Antioxidantes/farmacologia , Proliferação de Células , Autorrenovação Celular , Anergia Clonal/genética , Metabolismo Energético , Tolerância Imunológica , Ativação Linfocitária , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação OxidativaRESUMO
Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.
Assuntos
Arginase/metabolismo , Linfócitos/fisiologia , Pneumonia/imunologia , Animais , Arginase/genética , Proliferação de Células/genética , Células Cultivadas , Citocinas/metabolismo , Glicólise/genética , Humanos , Imunidade Inata , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Poliaminas/metabolismo , Células Th2/imunologiaRESUMO
Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation.
Assuntos
Interferon gama/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/imunologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/genética , Microscopia de Fluorescência , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição HES-1RESUMO
Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.
RESUMO
Intestinal health relies on the immunosuppressive activity of CD4+ regulatory T (Treg) cells1. Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1)2-4. Products of microbial fermentation including butyrate facilitate the generation of peripherally induced Treg (pTreg) cells5-7, indicating that metabolites shape the composition of the colonic immune cell population. In addition to dietary components, bacteria modify host-derived molecules, generating a number of biologically active substances. This is epitomized by the bacterial transformation of bile acids, which creates a complex pool of steroids8 with a range of physiological functions9. Here we screened the major species of deconjugated bile acids for their ability to potentiate the differentiation of pTreg cells. We found that the secondary bile acid 3ß-hydroxydeoxycholic acid (isoDCA) increased Foxp3 induction by acting on dendritic cells (DCs) to diminish their immunostimulatory properties. Ablating one receptor, the farnesoid X receptor, in DCs enhanced the generation of Treg cells and imposed a transcriptional profile similar to that induced by isoDCA, suggesting an interaction between this bile acid and nuclear receptor. To investigate isoDCA in vivo, we took a synthetic biology approach and designed minimal microbial consortia containing engineered Bacteroides strains. IsoDCA-producing consortia increased the number of colonic RORγt-expressing Treg cells in a CNS1-dependent manner, suggesting enhanced extrathymic differentiation.
Assuntos
Bactérias/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Bacteroides/metabolismo , Colo/microbiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Fermentação , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consórcios Microbianos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismoRESUMO
Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.
Assuntos
Microbioma Gastrointestinal/fisiologia , Intestinos/inervação , Neurônios/fisiologia , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia , Animais , Disbiose/fisiopatologia , Feminino , Gânglios Simpáticos/citologia , Gânglios Simpáticos/fisiologia , Motilidade Gastrointestinal , Vida Livre de Germes , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Vias Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , TranscriptomaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Impaired redox metabolism is a key contributor to the etiology of many diseases, including primary mitochondrial disorders, cancer, neurodegeneration and aging. However, mechanistic studies of redox imbalance remain challenging due to limited strategies that can perturb redox metabolism in various cellular or organismal backgrounds. Most studies involving impaired redox metabolism have focused on oxidative stress; consequently, less is known about the settings where there is an overabundance of NADH reducing equivalents, termed reductive stress. Here we introduce a soluble transhydrogenase from Escherichia coli (EcSTH) as a novel genetically encoded tool to promote reductive stress in living cells. When expressed in mammalian cells, EcSTH, and a mitochondrially targeted version (mitoEcSTH), robustly elevated the NADH/NAD+ ratio in a compartment-specific manner. Using this tool, we determined that metabolic and transcriptomic signatures of the NADH reductive stress are cellular background specific. Collectively, our novel genetically encoded tool represents an orthogonal strategy to promote reductive stress.
RESUMO
Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.
Assuntos
Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Enterococcus faecium/efeitos dos fármacos , Lactococcus lactis/metabolismo , Probióticos , Resistência a Vancomicina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Animais , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/isolamento & purificação , Enterococcus faecium/crescimento & desenvolvimento , Enterococcus faecium/isolamento & purificação , Fezes/microbiologia , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Lactococcus lactis/química , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/genética , Nisina/química , Nisina/farmacologia , Simbiose/efeitos dos fármacos , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Enterococos Resistentes à Vancomicina/isolamento & purificaçãoRESUMO
Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.
Assuntos
Glutaminase , Glutamina , Biomarcadores/metabolismo , Ciclo do Ácido Cítrico , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , MetabolômicaRESUMO
The production and secretion of matrix proteins upon stimulation of fibroblasts by transforming growth factor-beta (TGFß) play a critical role in wound healing. How TGFß supports the bioenergetic cost of matrix protein synthesis is not fully understood. Here, we show that TGFß promotes protein translation at least in part by increasing the mitochondrial oxidation of glucose and glutamine carbons to support the bioenergetic demand of translation. Surprisingly, we found that in addition to stimulating the entry of glucose and glutamine carbon into the TCA cycle, TGFß induced the biosynthesis of proline from glutamine in a Smad4-dependent fashion. Metabolic manipulations that increased mitochondrial redox generation promoted proline biosynthesis, while reducing mitochondrial redox potential and/or ATP synthesis impaired proline biosynthesis. Thus, proline biosynthesis acts as a redox vent, preventing the TGFß-induced increase in mitochondrial glucose and glutamine catabolism from generating damaging reactive oxygen species (ROS) when TCA cycle activity exceeds the ability of oxidative phosphorylation to convert mitochondrial redox potential into ATP. In turn, the enhanced synthesis of proline supports TGFß-induced production of matrix proteins.
Assuntos
Fibrose/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Mitocôndrias/metabolismo , Prolina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Ciclo do Ácido Cítrico , Colágeno/metabolismo , Metabolismo Energético , Humanos , Camundongos , Células NIH 3T3 , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismoRESUMO
The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Butiratos , Ácidos Graxos Voláteis/fisiologia , Camundongos , Linfócitos TRESUMO
Inflammasomes are multiprotein complexes that sense intracellular danger signals and induce pyroptosis. CARD8 and NLRP1 are related inflammasomes that are repressed by the enzymatic activities and protein structures of the dipeptidyl peptidases 8 and 9 (DPP8/9). Potent DPP8/9 inhibitors such as Val-boroPro (VbP) activate both NLRP1 and CARD8, but chemical probes that selectively activate only one have not been identified. Here we report a small molecule called CQ31 that selectively activates CARD8. CQ31 inhibits the M24B aminopeptidases prolidase (PEPD) and Xaa-Pro aminopeptidase 1 (XPNPEP1), leading to the accumulation of proline-containing peptides that inhibit DPP8/9 and thereby activate CARD8. NLRP1 is distinct from CARD8 in that it directly contacts DPP8/9's active site; these proline-containing peptides, unlike VbP, do not disrupt this repressive interaction and thus do not activate NLRP1. We expect that CQ31 will now become a valuable tool to study CARD8 biology.
Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Aminopeptidases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Neoplasias , ProlinaRESUMO
This corrects the article DOI: 10.1038/nature23874.
RESUMO
Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.
Assuntos
Aminopiridinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Proteínas Mutantes/genética , Mutação , Multimerização Proteica/genética , Triazinas/farmacologia , Alelos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Aminopiridinas/química , Aminopiridinas/uso terapêutico , Animais , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Glutamina/genética , Glutaratos/sangue , Glutaratos/metabolismo , Células HEK293 , Humanos , Isoleucina/genética , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Mutantes/antagonistas & inibidores , Triazinas/química , Triazinas/uso terapêuticoRESUMO
Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.
Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Acidemia Propiônica , Humanos , Valina/genética , Valina/metabolismo , Acil-CoA Desidrogenase/metabolismo , Isoleucina/metabolismo , Células HEK293 , CarnitinaRESUMO
Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).
Assuntos
Amidas/metabolismo , Bactérias/metabolismo , Mimetismo Biológico , Trato Gastrointestinal/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Simbiose , Amidas/química , Animais , Bactérias/enzimologia , Bactérias/genética , Glicemia/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Células HEK293 , Homeostase , Humanos , Ligantes , Masculino , CamundongosRESUMO
Acetylation of histones at DNA regulatory elements plays a critical role in transcriptional activation. Histones are also modified by other acyl moieties, including crotonyl, yet the mechanisms that govern acetylation versus crotonylation and the functional consequences of this "choice" remain unclear. We show that the coactivator p300 has both crotonyltransferase and acetyltransferase activities, and that p300-catalyzed histone crotonylation directly stimulates transcription to a greater degree than histone acetylation. Levels of histone crotonylation are regulated by the cellular concentration of crotonyl-CoA, which can be altered through genetic and environmental perturbations. In a cell-based model of transcriptional activation, increasing or decreasing the cellular concentration of crotonyl-CoA leads to enhanced or diminished gene expression, respectively, which correlates with the levels of histone crotonylation flanking the regulatory elements of activated genes. Our findings support a general principle wherein differential histone acylation (i.e., acetylation versus crotonylation) couples cellular metabolism to the regulation of gene expression.