RESUMO
Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases. We investigated transgenic mice with astrocyte-specific activation of the hypoxia-response program by deleting the oxygen sensors, HIF prolyl-hydroxylase domains 2 and 3 (Phd2/3). We induced astrocytic Phd2/3 deletion after onset of clinical signs in experimental autoimmune encephalomyelitis (EAE) that led to an exacerbation of the disease mediated by massive immune cell infiltration. We found that Phd2/3-ko astrocytes, though expressing a neuroprotective signature, exhibited a gradual loss of gap-junctional Connexin-43 (Cx43), which was induced by vascular endothelial growth factor-alpha (Vegf-a) expression. These results provide mechanistic insights into astrocyte biology, their critical role in hypoxic states, and in chronic inflammatory CNS diseases.
Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Prolil Hidroxilases/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismoRESUMO
DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-ß), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1ß/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-ß or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1ß/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-ß, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.
Assuntos
Colite Ulcerativa , Interferon Tipo I , Inibidores de Janus Quinases , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa , Inibidores de Caspase , Organoides/metabolismo , Pirina , Caspase 1/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Antígenos de DiferenciaçãoRESUMO
Stressful life events increase the susceptibility to developing psychiatric disorders such as depression; however, many individuals are resilient to such negative effects of stress. Determining the neurobiology underlying this resilience is instrumental to the development of novel and more effective treatments for stress-related psychiatric disorders. GABAB receptors are emerging therapeutic targets for the treatment of stress-related disorders such as depression. These receptors are predominantly expressed as heterodimers of a GABAB(2) subunit with either a GABAB(1a) or a GABAB(1b) subunit. Here we show that mice lacking the GABAB(1b) receptor isoform are more resilient to both early-life stress and chronic psychosocial stress in adulthood, whereas mice lacking GABAB(1a) receptors are more susceptible to stress-induced anhedonia and social avoidance compared with wild-type mice. In addition, increased hippocampal expression of the GABAB(1b) receptor subunit is associated with a depression-like phenotype in the helpless H/Rouen genetic mouse model of depression. Stress resilience in GABAB(1b)(-/-) mice is coupled with increased proliferation and survival of newly born cells in the adult ventral hippocampus and increased stress-induced c-Fos activation in the hippocampus following early-life stress. Taken together, the data suggest that GABAB(1) receptor subunit isoforms differentially regulate the deleterious effects of stress and, thus, may be important therapeutic targets for the treatment of depression.
Assuntos
Depressão/metabolismo , Receptores de GABA-B/fisiologia , Anedonia , Animais , Comportamento Animal , Proliferação de Células , Corticosterona/metabolismo , Depressão/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Risco , Estresse Psicológico , NataçãoRESUMO
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Assuntos
Neuroimunomodulação/imunologia , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Agonistas GABAérgicos/metabolismo , Antagonistas GABAérgicos/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Receptores de GABA/imunologia , Ácido gama-Aminobutírico/imunologiaRESUMO
General practice is generally the first point of contact for patients presenting with COVID-19. Since the start of the COVID-19 pandemic general practitioners (GPs) across Europe have had to adopt to using telemedicine consultations in order to minimise the number of social contacts made. GPs had to balance two needs: preventing the spread of COVID-19, while providing their patients with regular care for other health issues. The aim of this study was to conduct a scoping review of the literature examining the use of telemedicine for delivering routine general practice care since the start of the pandemic from the perspectives of patients and practitioners. The six-stage framework developed by Arksey and O'Malley, with recommendations by Levac et al was used to review the existing literature. The study selection process was conducted according to the PRISMA Extension for Scoping Reviews guidelines. Braun and Clarke's' Thematic Analysis' approach was used to interpret data. A total of eighteen studies across nine countries were included in the review. Thirteen studies explored the practitioner perspective of the use of telemedicine in general practice since the COVID-19 pandemic, while five studies looked at the patient perspective. The types of studies included were: qualitative studies, literature reviews, a systematic review, observational studies, quantitative studies, Critical incident technique study, and surveys employing both closed and open styled questions. Key themes identified related to the patient/ practitioner experience and knowledge of using telemedicine, patient/ practitioner levels of satisfaction, GP collaboration, nature of workload, and suitability of consultations for telemedicine. The nature of general practice was radically changed during the COVID-19 pandemic. Certain patient groups and areas of clinical and administrative work were identified as having performed well, if not better, by using telemedicine. Our findings suggest a level of acceptability and satisfaction of telemedicine by GPs and patients during the pandemic; however, further research is warranted in this area.
RESUMO
The field of metagenomics has rapidly expanded to become the go-to method for complex microbial community analyses. However, there is currently no straightforward route from metagenomics to traditional culture-based methods of strain isolation, particularly in (bacterio)phage biology, leading to an investigative bottleneck. Here, we describe a method that exploits specific phage receptor binding protein (RBP)-host cell surface receptor interaction enabling isolation of phage-host combinations from an environmental sample. The method was successfully applied to two complex sample types-a dairy-derived whey sample and an infant fecal sample, enabling retrieval of specific and culturable phage hosts. IMPORTANCE PhRACS aims to bridge the current divide between in silico genetic analyses (i.e., phageomic studies) and traditional culture-based methodology. Through the labeling of specific bacterial hosts with fluorescently tagged recombinant phage receptor binding proteins and the isolation of tagged cells using flow cytometry, PhRACS allows the full potential of phageomic data to be realized in the wet laboratory.
Assuntos
Bacteriófagos , Microbiota , Humanos , Bacteriófagos/genética , Soro do Leite , Receptores de Bacteriófagos , Bactérias/genética , Metagenômica/métodosRESUMO
BACKGROUND: Human preclinical models are crucial for advancing biomedical research. In particular consistent and robust protocols for astrocyte differentiation in the human system are rare. NEW METHOD: We performed a transcriptional characterization of human gliogenesis using embryonic H9- derived hNSCs. Based on these findings we established a fast and highly efficient protocol for the differentiation of mature human astrocytes. We could reproduce these results in induced pluripotent stem cell (iPSC)-derived NSCs. RESULTS: We identified an increasing propensity of NSCs to give rise to astrocytes with repeated cell passaging. The gliogenic phenotype of NSCs was marked by a down-regulation of stem cell factors (e.g. SOX1, SOX2, EGFR) and an increase of glia-associated factors (e.g. NFIX, SOX9, PDGFRa). Using late passage NSCs, rapid and robust astrocyte differentiation can be achieved within 28 days. COMPARISON WITH EXISTING METHOD(S): In published protocols it usually takes around three months to yield in mature astrocytes. The difficulty, expense and time associated with generating astrocytes in vitro represents a major roadblock for glial cell research. We show that rapid and robust astrocyte differentiation can be achieved within 28 days. We describe here by an extensive sequential transcriptome analysis of hNSCs the characterization of the signature of a novel gliogenic stem cell population. The transcriptomic signature might serve to identify the proper divisional maturity. CONCLUSIONS: This work sheds light on the factors associated with rapid NSC differentiation into glial cells. These findings contribute to understand human gliogenesis and to develop novel preclinical models that will help to study CNS disease such as Multiple Sclerosis.
Assuntos
Astrócitos , Células-Tronco Neurais , Diferenciação Celular , Células Cultivadas , Humanos , NeurogêneseRESUMO
Blood endothelial cells display remarkable plasticity depending on the demands of a malignant microenvironment. While studies in solid tumors focus on their role in metabolic adaptations, formation of high endothelial venules (HEVs) in lymph nodes extends their role to the organization of immune cell interactions. As a response to lymphoma growth, blood vessel density increases; however, the fate of HEVs remains elusive. Here, we report that lymphoma causes severe HEV regression in mouse models that phenocopies aggressive human B cell lymphomas. HEV dedifferentiation occurrs as a consequence of a disrupted lymph-carrying conduit system. Mechanosensitive fibroblastic reticular cells then deregulate CCL21 migration paths, followed by deterioration of dendritic cell proximity to HEVs. Loss of this crosstalk deprives HEVs of lymphotoxin-ß-receptor (LTßR) signaling, which is indispensable for their differentiation and lymphocyte transmigration. Collectively, this study reveals a remodeling cascade of the lymph node microenvironment that is detrimental for immune cell trafficking in lymphoma.
Assuntos
Movimento Celular , Células Endoteliais/metabolismo , Linfócitos/metabolismo , Linfoma de Células B/metabolismo , Animais , Células Endoteliais/patologia , Humanos , Células Jurkat , Linfócitos/patologia , Linfoma de Células B/patologia , Camundongos , Camundongos Transgênicos , VênulasRESUMO
BACKGROUND: Molecular analyses of cell populations and single cells have been instrumental in the advancement of our understanding of the physiology and pathologic processes of the nervous system. However, the limitation of these methods is the dependence on a gentle, efficient and specific enrichment procedure for the target cell population. In particular, this has been challenging for tightly interconnected cells, for example central nervous system (CNS) endogenous cells such as astrocytes. NEW METHOD: Here we adopted one of the most common methods of cell extraction, namely, enzymatic tissue digestion followed by fluorescence-activated cell sorting (FACS) of individual cells. We evaluated different enzymatic/mechanical tissue dissociation procedures and analyzed different astrocyte lineage transgenic models. Furthermore, we compared the cell extraction efficiency from spinal cord vs. brain. RESULTS: Enzymatic digestion of CNS tissue of Glast-CreERT2x tdTomatofl/fl or Aldh1l1-CreERT2x tdTomatofl/fl followed by FACS resulted in highly purified astrocytes. Automated tissue digestion strongly improved the isolated cell numbers. Aldh1l1-CreERT2 identified more astrocytes than Glast-CreERT2; isolation from brain yields higher numbers than from spinal cord. COMPARISON WITH EXISTING METHODS: We compared the efficiency and purity of the enzymatic dissociation/FACS approach with a more modern procedure consisting of tissue homogenization followed by translating ribosome affinity purification (TRAP). CONCLUSION: We found that both methods result in highly enriched astrocytic RNA. However, only TRAP isolation resulted in reliably detectable RNA concentrations from spinal cord tissue on a single animal level. Depending on the aim of the study both methods have advantages and disadvantages but both are acceptable for astrocytic RNA analysis.
Assuntos
Astrócitos , RNA , Animais , Encéfalo , Sistema Nervoso Central , Camundongos , Medula EspinalRESUMO
The GABAB receptor agonist, baclofen, is used to treat muscle tightness and cramping caused by spasticity in a number of disorders including multiple sclerosis (MS), but its precise mechanism of action is unknown. Neuroinflammation drives the central pathology in MS and is mediated by both immunoreactive glial cells and invading lymphocytes. Furthermore, a body of data indicates that the Toll-like receptor (TLR) family of innate immune receptors is implicated in MS progression. In the present study we investigated whether modulation of GABAB receptors using baclofen can exert anti-inflammatory effects by targeting TLR3 and(or) TLR4-induced inflammatory signaling in murine glial cells and human peripheral blood mononuclear cells (PBMCs) isolated from healthy control individuals and patients with the relapse-remitting (RR) form of MS. TLR3 and TLR4 stimulation promoted the nuclear sequestration of NF-κB and pro-inflammatory cytokine expression in murine glia, while TLR4, but not TLR3, promoted pro-inflammatory cytokine expression in PBMCs isolated from both healthy donors and RR-MS patients. Importantly, this effect was exacerbated in RR-MS patient immune cells. We present further evidence that baclofen dose-dependently attenuated TLR3- and TLR4-induced inflammatory signaling in primary glial cells. Pre-exposure of PBMCs isolated from healthy donors to baclofen attenuated TLR4-induced TNF-α expression, but did not affect TLR4-induced TNF-α expression in RR-MS patient PBMCs. Interestingly, mRNA expression of the GABAB receptor was reduced in PBMCs from RR-MS donors when compared to healthy controls, an effect that might contribute to the differential sensitivity to baclofen seen in healthy and RR-MS patient cells. Overall these findings indicate that baclofen differentially regulates TLR3 and TLR4 signaling in glia and immune cells, and offers insight on the role of baclofen in the treatment of neuroinflammatory disease states including MS.