Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 86, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509572

RESUMO

BACKGROUND: Escherichia coli is one of the most commonly used host organisms for the production of biopharmaceuticals, as it allows for cost-efficient and fast recombinant protein expression. However, challenging proteins are often produced with low titres or as inclusion bodies, and the manufacturing process needs to be developed individually for each protein. Recently, we developed the CASPONTM technology, a generic fusion tag-based platform process for high-titer soluble expression including a standardized downstream processing and highly specific enzymatic cleavage of the fusion tag. To assess potential strategies for further improvement of the N-terminally fused CASPONTM tag, we modified the 5'UTR and 5' region of the tag-coding mRNA to optimize the ribosome-mRNA interactions. RESULTS: In the present work, we found that by modifying the 5'UTR sequence of a pET30acer plasmid-based system, expression of the fusion protein CASPONTM-tumour necrosis factor α was altered in laboratory-scale carbon-limited fed-batch cultivations, but no significant increase in expression titre was achieved. Translation efficiency was highest for a construct carrying an expression enhancer element and additionally possessing a very favourable interaction energy between ribosome and mRNA (∆Gtotal). However, a construct with comparatively low transcriptional efficiency, which lacked the expression enhancer sequence and carried the most favourable ∆Gtotal tested, led to the highest recombinant protein formation alongside the reference pET30a construct. Furthermore, we found, that by introducing synonymous mutations within the nucleotide sequence of the T7AC element of the CASPONTM tag, utilizing a combination of rare and non-rare codons, the free folding energy of the nucleotides at the 5' end (-4 to + 37) of the transcript encoding the CASPONTM tag increased by 6 kcal/mol. Surprisingly, this new T7ACrare variant led to improved recombinant protein titres by 1.3-fold up to 5.3-fold, shown with three industry-relevant proteins in lab-scale carbon limited fed-batch fermentations under industrially relevant conditions. CONCLUSIONS: This study reveals some of the complex interdependencies between the ribosome and mRNA that govern recombinant protein expression. By modifying the 5'UTR to obtain an optimized interaction energy between the mRNA and the ribosome (ΔGtotal), transcript levels were changed, highlighting the different translation efficiencies of individual transcripts. It was shown that the highest recombinant titre was not obtained by the construct with the most efficient translation but by a construct with a generally high transcript amount coupled with a favourable ΔGtotal. Furthermore, an unexpectedly high potential to enhance expression by introducing silent mutations including multiple rare codons into the 5'end of the CAPONTM tag's mRNA was identified. Although the titres of the fusion proteins were dramatically increased, no formation of inclusion bodies or negative impact on cell growth was observed. We hypothesize that the drastic increase in titre is most likely caused by better ribosomal binding site accessibility. Our study, which demonstrates the influence of changes in ribosome-mRNA interactions on protein expression under industrially relevant production conditions, opens the door to the applicability of the new T7ACrare tag in biopharmaceutical industry using the CASPONTM platform process.


Assuntos
Carbono , Escherichia coli , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Escherichia coli/genética , Escherichia coli/metabolismo , Códon , Proteínas Recombinantes/genética , Proteínas Recombinantes de Fusão/genética
2.
Microb Cell Fact ; 23(1): 14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183013

RESUMO

BACKGROUND: Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS: Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS: Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.


Assuntos
Escherichia coli , Escherichia coli/genética , RNA-Seq , Análise de Sequência de RNA , Proteínas Recombinantes , Expressão Gênica
3.
Microb Cell Fact ; 23(1): 166, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840157

RESUMO

BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.


Assuntos
Dissulfetos , Escherichia coli , Peptídeos , Periplasma , Escherichia coli/metabolismo , Escherichia coli/genética , Periplasma/metabolismo , Dissulfetos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Aprotinina/metabolismo , Aprotinina/genética
4.
Nucleic Acids Res ; 50(18): 10772-10784, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36134715

RESUMO

Governance of the endogenous gene regulatory network enables the navigation of cells towards beneficial traits for recombinant protein production. CRISPRactivation and interference provides the basis for gene expression modulation but is primarily applied in eukaryotes. Particularly the lack of wide-ranging prokaryotic CRISPRa studies might be attributed to intrinsic limitations of bacterial activators and Cas9 proteins. While bacterial activators need accurate spatial orientation and distancing towards the target promoter to be functional, Cas9-based CRISPR tools only bind sites adjacent to NGG PAM sequences. These circumstances hampered Cas9-guided activators from mediating the up-regulation of endogenous genes at precise positions in bacteria. We could overcome this limitation by combining the PAM independent Cas9 variant SpRY and a CRISPRa construct using phage protein MCP fused to transcriptional activator SoxS. This CRISPRa construct, referred to as SMS, was compared with previously reported CRISPRa constructs and showed up-regulation of a reporter gene library independent of its PAM sequence in Escherichia coli. We also demonstrated down-regulation and multi-gene expression control with SMS at non-NGG PAM sites. Furthermore, we successfully applied SMS to up-regulate endogenous genes, and transgenes at non-NGG PAM sites, which was impossible with the previous CRISPRa construct.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768962

RESUMO

Stress-associated changes in the mechanical properties at the single-cell level of Escherichia coli (E. coli) cultures in bioreactors are still poorly investigated. In our study, we compared peptide-producing and non-producing BL21(DE3) cells in a fed-batch cultivation with tightly controlled process parameters. The cell growth, peptide content, and cell lysis were analysed, and changes in the mechanical properties were investigated using atomic force microscopy. Recombinant-tagged somatostatin-28 was expressed as soluble up to 197 ± 11 mg g-1. The length of both cultivated strains increased throughout the cultivation by up to 17.6%, with nearly constant diameters. The peptide-producing cells were significantly softer than the non-producers throughout the cultivation, and respective Young's moduli decreased by up to 57% over time. A minimum Young's modulus of 1.6 MPa was observed after 23 h of the fed-batch. Furthermore, an analysis of the viscoelastic properties revealed that peptide-producing BL21(DE3) appeared more fluid-like and softer than the non-producing reference. For the first time, we provide evidence that the physical properties (i.e., the mechanical properties) on the single-cell level are significantly influenced by the metabolic burden imposed by the recombinant peptide expression and C-limitation in bioreactors.


Assuntos
Reatores Biológicos , Escherichia coli , Proteínas Recombinantes/metabolismo , Ciclo Celular
6.
J Biol Chem ; 297(4): 101095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418435

RESUMO

Proteases serve as important tools in biotechnology and as valuable drugs or drug targets. Efficient protein engineering methods to study and modulate protease properties are thus of great interest for a plethora of applications. We established PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection), a bacterial selection system, which enables the optimization of proteases for biotechnology, therapeutics or diagnosis in a simple overnight process. During the PROFICS process, proteases are selected for their ability to specifically cut a tag from a reporter enzyme and leave a native N-terminus. Precise and efficient cleavage after the recognition sequence reverses the phenotype of an Escherichia coli knockout strain deficient in an essential enzyme of pyrimidine synthesis. A toolbox was generated to select for proteases with different preferences for P1' residues (the residue immediately following the cleavage site). The functionality of PROFICS is demonstrated with viral proteases and human caspase-2. PROFICS improved caspase-2 activity up to 25-fold after only one round of mutation and selection. Additionally, we found a significantly improved tolerance for all P1' residues caused by a mutation in a substrate interaction site. We showed that this improved activity enables cells containing the new variant to outgrow cells containing all other mutants, facilitating its straightforward selection. Apart from optimizing enzymatic activity and P1' tolerance, PROFICS can be used to reprogram specificities, erase off-target activity, optimize expression via tags/codon usage, or even to screen for potential drug-resistance-conferring mutations in therapeutic targets such as viral proteases in an unbiased manner.


Assuntos
Caspase 2 , Cisteína Endopeptidases , Evolução Molecular Direcionada , Escherichia coli , Engenharia de Proteínas , Caspase 2/biossíntese , Caspase 2/química , Caspase 2/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos
7.
Microb Cell Fact ; 21(1): 170, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999607

RESUMO

BACKGROUND: Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. RESULTS: We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. CONCLUSIONS: This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.


Assuntos
Produtos Biológicos , Escherichia coli , Aminoácidos/metabolismo , Produtos Biológicos/metabolismo , Códon/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes
8.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887026

RESUMO

Fusion protein technologies to facilitate soluble expression, detection, or subsequent affinity purification in Escherichia coli are widely used but may also be associated with negative consequences. Although commonly employed solubility tags have a positive influence on titers, their large molecular mass inherently results in stochiometric losses of product yield. Furthermore, the introduction of affinity tags, especially the polyhistidine tag, has been associated with undesirable changes in expression levels. Fusion tags are also known to influence the functionality of the protein of interest due to conformational changes. Therefore, particularly for biopharmaceutical applications, the removal of the fusion tag is a requirement to ensure the safety and efficacy of the therapeutic protein. The design of suitable fusion tags enabling the efficient manufacturing of the recombinant protein remains a challenge. Here, we evaluated several N-terminal fusion tag combinations and their influence on product titer and cell growth to find an ideal design for a generic fusion tag. For enhancing soluble expression, a negatively charged peptide tag derived from the T7 bacteriophage was combined with affinity tags and a caspase-2 cleavage site applicable for CASPase-based fusiON (CASPON) platform technology. The effects of each combinatorial tag element were investigated in an integrated manner using human fibroblast growth factor 2 as a model protein in fed-batch lab-scale bioreactor cultivations. To confirm the generic applicability for manufacturing, seven additional pharmaceutically relevant proteins were produced using the best performing tag of this study, named CASPON-tag, and tag removal was demonstrated.


Assuntos
Escherichia coli , Fusão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
9.
Microb Cell Fact ; 20(1): 79, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827582

RESUMO

BACKGROUND: Glucosylglycerol (2-O-α-D-glucosyl-sn-glycerol; GG) is a natural osmolyte from bacteria and plants. It has promising applications as cosmetic and food-and-feed ingredient. Due to its natural scarcity, GG must be prepared through dedicated synthesis, and an industrial bioprocess for GG production has been implemented. This process uses sucrose phosphorylase (SucP)-catalyzed glycosylation of glycerol from sucrose, applying the isolated enzyme in immobilized form. A whole cell-based enzyme formulation might constitute an advanced catalyst for GG production. Here, recombinant production in Escherichia coli BL21(DE3) was compared systematically for the SucPs from Leuconostoc mesenteroides (LmSucP) and Bifidobacterium adolescentis (BaSucP) with the purpose of whole cell catalyst development. RESULTS: Expression from pQE30 and pET21 plasmids in E. coli BL21(DE3) gave recombinant protein at 40-50% share of total intracellular protein, with the monomeric LmSucP mostly soluble (≥ 80%) and the homodimeric BaSucP more prominently insoluble (~ 40%). The cell lysate specific activity of LmSucP was 2.8-fold (pET21; 70 ± 24 U/mg; N = 5) and 1.4-fold (pQE30; 54 ± 9 U/mg, N = 5) higher than that of BaSucP. Synthesis reactions revealed LmSucP was more regio-selective for glycerol glycosylation (~ 88%; position O2 compared to O1) than BaSucP (~ 66%), thus identifying LmSucP as the enzyme of choice for GG production. Fed-batch bioreactor cultivations at controlled low specific growth rate (µ = 0.05 h-1; 28 °C) for LmSucP production (pET21) yielded ~ 40 g cell dry mass (CDM)/L with an activity of 2.0 × 104 U/g CDM, corresponding to 39 U/mg protein. The same production from the pQE30 plasmid gave a lower yield of 6.5 × 103 U/g CDM, equivalent to 13 U/mg. A single freeze-thaw cycle exposed ~ 70% of the intracellular enzyme activity for GG production (~ 65 g/L, ~ 90% yield from sucrose), without releasing it from the cells during the reaction. CONCLUSIONS: Compared to BaSucP, LmSucP is preferred for regio-selective GG production. Expression from pET21 and pQE30 plasmids enables high-yield bioreactor production of the enzyme as a whole cell catalyst. The freeze-thaw treated cells represent a highly active, solid formulation of the LmSucP for practical synthesis.


Assuntos
Escherichia coli/metabolismo , Glucosídeos/biossíntese , Proteínas Recombinantes/biossíntese
10.
Microb Cell Fact ; 19(1): 58, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138729

RESUMO

BACKGROUND: The genome-integrated T7 expression system offers significant advantages, in terms of productivity and product quality, even when expressing the gene of interest (GOI) from a single copy. Compared to plasmid-based expression systems, this system does not incur a plasmid-mediated metabolic load, and it does not vary the dosage of the GOI during the production process. However, long-term production with T7 expression system leads to a rapidly growing non-producing population, because the T7 RNA polymerase (RNAP) is prone to mutations. The present study aimed to investigate whether two σ70 promoters, which were recognized by the Escherichia coli host RNAP, might be suitable in genome-integrated expression systems. We applied a promoter engineering strategy that allowed control of expressing the model protein, GFP, by introducing lac operators (lacO) into the constitutive T5 and A1 promoter sequences. RESULTS: We showed that, in genome-integrated E. coli expression systems that used σ70 promoters, the number of lacO sites must be well balanced. Promoters containing three and two lacO sites exhibited low basal expression, but resulted in a complete stop in recombinant protein production in partially induced cultures. In contrast, expression systems regulated by a single lacO site and the lac repressor element, lacIQ, on the same chromosome caused very low basal expression, were highly efficient in recombinant protein production, and enables fine-tuning of gene expression levels on a cellular level. CONCLUSIONS: Based on our results, we hypothesized that this phenomenon was associated with the autoregulation of the lac repressor protein, LacI. We reasoned that the affinity of LacI for the lacO sites of the GOI must be lower than the affinity of LacI to the lacO sites of the endogenous lac operon; otherwise, LacI autoregulation could not take place, and the lack of LacI autoregulation would lead to a disturbance in lac repressor-mediated regulation of transcription. By exploiting the mechanism of LacI autoregulation, we created a novel E. coli expression system for use in recombinant protein production, synthetic biology, and metabolic engineering applications.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Repressores Lac/genética , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Fluorescência Verde/genética , Óperon Lac/genética , Proteínas Recombinantes , Proteínas Virais/genética
11.
J Biotechnol ; 384: 29-37, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423471

RESUMO

Cell disintegration and protein extraction are crucial steps in downstream process development for biopharmaceuticals produced in E. coli. In this study, we explored the extraction mechanism of polyethyleneimine (PEI) at the cellular level and characterized the floc network that is formed upon PEI addition by Focused Beam Reflectance Measurement and Dispersion Analyzer. PEI disintegrates the cells by detachment of the outer membrane allowing protein to diffuse into the interspace of the flocs. Protein release into the supernatant occurs by diffusion out of the floc network. We could show that the type and concentrations of PEIs with varying molecular weight determines the floc properties and thus the extraction efficiency. We could demonstrate why optimal conditions, using 70 kDa PEI at 0.25 g/g cell dry mass, lead to efficient extraction while at suboptimal conditions extraction is almost negligible. Our findings provide valuable insights into the relationship between floc properties and PEI-driven protein extraction, with potential applications in bioprocessing and biotechnology.


Assuntos
Escherichia coli , Polietilenoimina , Escherichia coli/genética , Peso Molecular , Proteínas de Membrana
12.
Appl Environ Microbiol ; 79(12): 3802-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584782

RESUMO

Plasmid-based Escherichia coli BL21(DE3) expression systems are extensively used for the production of recombinant proteins. However, the combination of a high gene dosage with strong promoters exerts extremely stressful conditions on producing cells, resulting in a multitude of protective reactions and malfunctions in the host cell with a strong impact on yield and quality of the product. Here, we provide in-depth characterization of plasmid-based perturbations in recombinant protein production. A plasmid-free T7 system with a single copy of the gene of interest (GOI) integrated into the genome was used as a reference. Transcriptomics in combination with a variety of process analytics were used to characterize and compare a plasmid-free T7-based expression system to a conventional pET-plasmid-based expression system, with both expressing human superoxide dismutase in fed-batch cultivations. The plasmid-free system showed a moderate stress response on the transcriptional level, with only minor effects on cell growth. In contrast to this finding, comprehensive changes on the transcriptome level were observed in the plasmid-based expression system and cell growth was heavily impaired by recombinant gene expression. Additionally, we found that the T7 terminator is not a sufficient termination signal. Overall, this work reveals that the major metabolic burden in plasmid-based systems is caused at the level of transcription as a result of overtranscription of the multicopy product gene and transcriptional read-through of T7 RNA polymerase. We therefore conclude that the presence of high levels of extrinsic mRNAs, competing for the limited number of ribosomes, leads to the significantly reduced translation of intrinsic mRNAs.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Análise em Microsséries , Plasmídeos/genética
13.
Microb Cell Fact ; 12: 58, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23758670

RESUMO

BACKGROUND: In the biopharmaceutical industry, Escherichia coli (E. coli) strains are among the most frequently used bacterial hosts for producing recombinant proteins because they allow a simple process set-up and they are Food and Drug Administration (FDA)-approved for human applications. Widespread use of E. coli in biotechnology has led to the development of many different strains, and selecting an ideal host to produce a specific protein of interest is an important step in developing a production process. E. coli B and K-12 strains are frequently employed in large-scale production processes, and therefore are of particular interest. We previously evaluated the individual cultivation characteristics of E. coli BL21 and the K-12 hosts RV308 and HMS174. To our knowledge, there has not yet been a detailed comparison of the individual performances of these production strains in terms of recombinant protein production and system stability. The present study directly compared the T7-based expression hosts E. coli BL21(DE3), RV308(DE3), and HMS174(DE3), focusing on evaluating the specific attributes of these strains in relation to high-level protein production of the model protein recombinant human superoxide dismutase (SOD). The experimental setup was an exponential carbon-limited fed-batch cultivation with minimal media and single-pulse induction. RESULTS: The host strain BL21(DE3) produced the highest amounts of specific protein, followed by HMS174(DE3) and RV308(DE3). The expression system HMS174(DE3) exhibited system stability by retaining the expression vector over the entire process time; however, it entirely stopped growing shortly after induction. In contrast, BL21(DE3) and RV308(DE3) encountered plasmid loss but maintained growth. RV308(DE3) exhibited the lowest ppGpp concentration, which is correlated with the metabolic stress level and lowest degradation of soluble protein fraction compared to both other strains. CONCLUSIONS: Overall, this study provides novel data regarding the individual strain properties and production capabilities, which will enable targeted strain selection for producing a specific protein of interest. This information can be used to accelerate future process design and implementation.


Assuntos
Escherichia coli/metabolismo , Superóxido Dismutase/metabolismo , Técnicas de Cultura Celular por Lotes , Carbono/metabolismo , Escherichia coli/crescimento & desenvolvimento , Dosagem de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Solubilidade , Superóxido Dismutase/genética
14.
J Biotechnol ; 371-372: 41-49, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285941

RESUMO

We used a polycationic polymer polyethyleneimine (PEI) to develop a method to extract recombinant proteins produced in the Escherichia coli (E. coli) cytosol. Compared to high pressure homogenization, commonly used to disrupt E. coli cells, our extraction method leads to higher purity of extracts. Upon addition of PEI to the cells, flocculation occurs and the recombinant protein gradually diffuses out of the PEI/cell network. While several aspects such as the E. coli strain, the cell or PEI concentration as well as the protein titer and the pH of the buffer seem to influence the extraction rate, our results show that the PEI molecule (molecular weight and structure) must be chosen appropriately for protein extraction. The method works well with resuspended cells but can also be applied directly to fermentation broths at higher PEI concentration. This extraction approach allows for effective reduction of DNA, endotoxins, and host cell proteins levels by 2-4 orders of magnitude, and drastically facilitate the subsequent downstream processing steps such as centrifugation and filtration.


Assuntos
Escherichia coli , Polietilenoimina , Escherichia coli/metabolismo , Polietilenoimina/química , Proteínas de Fluorescência Verde/metabolismo , DNA , Floculação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Biotechnol J ; 18(1): e2200152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442862

RESUMO

The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future.


Assuntos
Reatores Biológicos , Hidrodinâmica , Simulação por Computador , Biotecnologia , Biomassa , Escherichia coli/genética
16.
Heliyon ; 9(12): e22463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046162

RESUMO

Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like µ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.

17.
ACS Synth Biol ; 11(2): 820-834, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35041397

RESUMO

Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Dissulfetos/química , Dissulfetos/metabolismo , Transporte de Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo
18.
N Biotechnol ; 71: 37-46, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926774

RESUMO

Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover. To make the platform fusion protein process even more general such that any protein with an authentic N-terminus can be produced with high efficiency, the bacterial selection system PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection) was used to evolve cpCasp2 into a variant with a catalytic turnover two orders of magnitude higher and the ability to cleave before any amino acid. The high specificity and the stability of the original circularly permuted protease was fully retained in this mutant, while the high manufacturability was mostly retained, albeit with decreased soluble titer. Four point-mutations are responsible for this change in activity, two of which are located in or near the binding pocket of the active site. This variant was named CASPON enzyme and is a major component of the CASPase-based fusiON (CASPON) platform technology. Applicability for the production of recombinant proteins was demonstrated by enzymatic removal of the CASPON tag from five model proteins. The CASPON tag enables high soluble expressions, affinity purification and good accessibility for cleavage. The five industry-relevant proteins of interest were FGF2, TNF, GH, GCSF and PTH.


Assuntos
Aminoácidos , Caspase 2 , Cromatografia de Afinidade , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes
19.
Sci Rep ; 11(1): 2056, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479431

RESUMO

Tremendous advancements in cell and protein engineering methodologies and bioinformatics have led to a vast increase in bacterial production clones and recombinant protein variants to be screened and evaluated. Consequently, an urgent need exists for efficient high-throughput (HTP) screening approaches to improve the efficiency in early process development as a basis to speed-up all subsequent steps in the course of process design and engineering. In this study, we selected the BioLector micro-bioreactor (µ-bioreactor) system as an HTP cultivation platform to screen E. coli expression clones producing representative protein candidates for biopharmaceutical applications. We evaluated the extent to which generated clones and condition screening results were transferable and comparable to results from fully controlled bioreactor systems operated in fed-batch mode at moderate or high cell densities. Direct comparison of 22 different production clones showed great transferability. We observed the same growth and expression characteristics, and identical clone rankings except one host-Fab-leader combination. This outcome demonstrates the explanatory power of HTP µ-bioreactor data and the suitability of this platform as a screening tool in upstream development of microbial systems. Fast, reliable, and transferable screening data significantly reduce experiments in fully controlled bioreactor systems and accelerate process development at lower cost.


Assuntos
Reatores Biológicos , Engenharia Celular/tendências , Ensaios de Triagem em Larga Escala/métodos , Engenharia de Proteínas/tendências , Biomassa , Escherichia coli/genética , Humanos , Proteínas Recombinantes/genética
20.
Biotechnol J ; 16(6): e2000562, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33580620

RESUMO

Bioprocess development and optimization is a challenging, costly, and time-consuming effort. In this multidisciplinary task, upstream processing (USP) and downstream processing (DSP) are conventionally considered distinct disciplines. This consideration fosters "one-way" optimization disregarding interdependencies between unit operations; thus, the full potential of the process chain cannot be achieved. Therefore, it is necessary to fully integrate USP and DSP process development to provide balanced biotechnological production processes. The aim of the present study was to investigate how different host/secretory signal/antigen binding fragment (Fab) combinations in E. coli expression systems influence USP, primary recovery performance and the final product quality. We ran identical fed-batch cultivations with 16 different expression clones to study growth and product formation kinetics, as well as centrifugation efficiency, viscosity, extracellular DNA, and endotoxin content, important parameters in DSP. We observed a severe influence on cell growth, product titer, extracellular product, and cell lysis, accompanied by a significant impact on the analyzed parameters of DSP performance. Our results provide the basis for future research on integrated process development considering interdependencies between USP and DSP; however, individual products need to be considered specifically. These interdependencies need to be understood for rational decision-making and efficient process development in research and industry.


Assuntos
Escherichia coli , Fragmentos Fab das Imunoglobulinas , Biotecnologia , Centrifugação , Escherichia coli/genética , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA