Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0176423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193709

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Transdução de Sinais , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Ativação Viral , Latência Viral , Animais , Camundongos
2.
J Virol ; 97(5): e0135222, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37129520

RESUMO

Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Humanos , Herpesvirus Humano 1/genética , Imunidade Inata , Ativação Viral/fisiologia , Latência Viral/fisiologia , Genoma Viral
3.
EMBO Rep ; 22(9): e52547, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34197022

RESUMO

Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Interferon Tipo I , Animais , Genoma Viral , Herpes Simples/genética , Herpesvirus Humano 1/genética , Interferon Tipo I/genética , Camundongos , Latência Viral
4.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986840

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and can periodically reactivate to permit transmission and clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection and therefore HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. Activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full, Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required for the transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during HSV latent infection of neurons to promote reactivation. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.

5.
Autophagy ; 16(1): 167-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533518

RESUMO

Lysosomal degradation of protein aggregates and damaged organelles is essential for maintaining cellular homeostasis. This process in neurons is challenging due to their highly polarized architecture. While enzymatically active degradative lysosomes are enriched in the cell body, their trafficking and degradation capacity in axons remain elusive. We recently characterized the axonal delivery of degradative lysosomes by applying a set of fluorescent probes that selectively label active forms of lysosomal hydrolases on cortical neurons in microfluidic devices. We revealed that soma-derived degradative lysosomes rapidly influx into distal axons and target to autophagosomes and Parkinson disease-related SNCA/α-synuclein cargos for local degradation. Disrupting axon-targeted delivery of degradative lysosomes induces axonal autophagic stress. We demonstrate that the axon is an active compartment for local degradation, establishing a foundation for future investigations into axonal lysosome trafficking and functionality in neurodegenerative diseases and lysosomal storage disorders associated with axonal pathology and macroautophagy/autophagy stress.


Assuntos
Autofagia/fisiologia , Axônios/metabolismo , Homeostase/fisiologia , Lisossomos/metabolismo , Animais , Corpo Celular/metabolismo , Humanos , Neurônios/metabolismo
6.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33350386

RESUMO

Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1ß is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1ß induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1ß triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.


Assuntos
Herpesvirus Humano 1/fisiologia , Interleucina-1beta/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neurônios/virologia , Ativação Viral/fisiologia , Animais , Herpes Simples/imunologia , Herpes Simples/metabolismo , Camundongos , Latência Viral/fisiologia
7.
Cell Rep ; 28(1): 51-64.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269450

RESUMO

Neurons face the challenge of maintaining cellular homeostasis through lysosomal degradation. While enzymatically active degradative lysosomes are enriched in the soma, their axonal trafficking and positioning and impact on axonal physiology remain elusive. Here, we characterized axon-targeted delivery of degradative lysosomes by applying fluorescent probes that selectively label active forms of lysosomal cathepsins D, B, L, and GCase. By time-lapse imaging of cortical neurons in microfluidic devices and standard dishes, we reveal that soma-derived degradative lysosomes rapidly influx into distal axons and target to autophagosomes and Parkinson disease-related α-synuclein cargos for local degradation. Impairing lysosome axonal delivery induces an aberrant accumulation of autophagosomes and α-synuclein cargos in distal axons. Our study demonstrates that the axon is an active compartment for local degradation and reveals fundamental aspects of axonal lysosomal delivery and maintenance. Our work establishes a foundation for investigations into axonal lysosome trafficking and functionality in neurodegenerative diseases.


Assuntos
Autofagossomos/enzimologia , Transporte Axonal/genética , Axônios/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/genética , Autofagia/fisiologia , Transporte Axonal/fisiologia , Axônios/enzimologia , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Feminino , Gânglios Espinais/enzimologia , Gânglios Espinais/metabolismo , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Células HEK293 , Homeostase/genética , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/enzimologia , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA