Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Cancer ; 149: 153-164, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33865201

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionised cancer therapy but frequently cause immune-related adverse events (irAEs). Description of late-onset and duration of irAEs in the literature is often incomplete. METHODS: To investigate reporting and incidence of late-onset and long-lasting irAEs, we reviewed all registration trials leading to ICI's approval by the US FDA and/or EMA up to December 2019. We analysed real-world data from all lung cancer (LC) and melanoma (Mel) patients treated with approved ICIs at the University Hospital of Lausanne (CHUV) from 2011 to 2019. To account for the immortal time bias, we used a time-dependent analysis to assess the potential association between irAEs and overall survival (OS). RESULTS: Duration of irAEs and proportion of patients with ongoing toxicities at data cut-off were not specified in 56/62 (90%) publications of ICIs registration trials. In our real-world analysis, including 437 patients (217 LC, 220 Mel), 229 (52.4%) experienced at least one grade ≥2 toxicity, for a total of 318 reported irAEs, of which 112 (35.2%) were long-lasting (≥6 months) and about 40% were ongoing at a median follow-up of 369 days [194-695] or patient death. The cumulative probability of irAE onset from treatment initiation was 42.8%, 51.0% and 57.3% at 6, 12 and 24 months, respectively. The rate of ongoing toxicity from the time of first toxicity onset was 42.8%, 38.4% and 35.7% at 6, 12 and 24 months. Time-dependent analysis showed no significant association between the incidence of irAEs and OS in both cohorts (log Rank p = 0.67 and 0.19 for LC and Mel, respectively). CONCLUSIONS: Late-onset and long-lasting irAEs are underreported but common events during ICIs therapy. Time-dependent survival analysis is advocated to assess their impact on OS. Real-world evidence is warranted to fully capture and characterise late-onset and long-lasting irAEs in order to implement appropriate strategies for patient surveillance and follow-up.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Quimioterapia Adjuvante/efeitos adversos , Ensaios Clínicos como Assunto , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/mortalidade , Registros Eletrônicos de Saúde , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Masculino , Melanoma/imunologia , Melanoma/mortalidade , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Fatores de Tempo , Resultado do Tratamento
2.
Front Immunol ; 4: 268, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24062738

RESUMO

Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8(+) T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, K D = ∼1 - 5 µM. Beyond the affinity threshold at K D < 1 µM we observed an attenuation in cellular function, in line with the "half-life" model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA