RESUMO
Atmospheric deposition plays a significant role in introducing cadmium (Cd) into agroecological systems; however, accurately determining its accumulation in crops through foliar and root uptake presents challenges. This study investigated the bioaccumulation of atmospherically deposited Cd in soybean using a three-year fully factorial atmospheric exposure experiment incorporating Cd isotope analysis. Results shown that atmospheric deposition accounted for 1-13% of soil Cd pools, yet contributed 11-72% of Cd to soybean tissues during the growing seasons. Over the course of soil exposure to atmospheric deposition ranging from 1 to 3 years, no notable variations were observed in Cd concentrations in soil solutions and soybean tissues, nor in isotope ratios. Newly deposited Cd was a major source in soybean plants, and the bioavailability of deposited Cd rapidly aged in soils. Atmospheric Cd enriched in lighter isotopes induced negative isotope shifts in soybean plants. By employing an optimized isotope mixing model in conjunction with a mass balance approach, foliar Cd uptake contributed 13-51%, 16-45%, and 21-56% to stem, leaf, and seed, respectively. This study highlights substantial contribution of foliar uptake of atmospheric deposition to Cd levels in soybean and controlling foliar uptake as a potential strategy in agroecological systems experiencing high atmospheric Cd deposition.
Assuntos
Cádmio , Glycine max , Glycine max/metabolismo , Cádmio/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Bioacumulação , IsótoposRESUMO
Cadmium (Cd) stable isotopes provide a novel technique to investigate the fate of Cd in the environment, but challenges exist for tracing the sources in the plants. We performed individual rice leaf and root exposures to dry and wet deposition using customized open-top chambers (OTCs) in the greenhouse and in the field next to a smelter, respectively. The field experiment also included a control without Cd deposition and a "full" treatment. The exposure experiments and isotope signatures showed that leaves can directly take up atmospheric Cd and then translocate within rice plants to other tissues, contributing 52-70% of Cd in grains, which exceeded the contribution (30-48%) by root exposure. The Cd isotopes in leaves, nodes, internodes, and grains demonstrate that roots preferentially take up Cd from wet deposition, but leaves favor uptake of Cd from dry deposition. The Cd uptake by leaves is redistributed via nodes, allowing for upward transport to the grains but preventing downward transport to the roots. Leaves favor uptake of heavy isotopes from atmospheric deposition (ΔCd114/110Leaf-Dust: 0.10 ± 0.02) but retain light isotopes and transport heavy isotopes to the nodes and further to grains. These findings highlight the contribution of atmospheric deposition to rice and Cd isotopes as a useful tracer for quantifying sources in plants when different isotopic compositions are in sources.
Assuntos
Oryza , Poluentes do Solo , Cádmio , Folhas de Planta/química , Isótopos/análise , SoloRESUMO
Biochar has been widely applied to remediate heavy metal-contaminated soils, but the environmental risk of the endogenous pollutants in biochar remains unclear. Two biochars with different endogenous cadmium (Cd) concentrations were prepared from background soil (BCB) and contaminated soil (BCC), respectively. We studied the effects of simulated acid rain (SAR) on the activation mechanism of endogenous Cd in biochar and Cd uptake of Cd by lettuce from the biochar-amended soils. SAR aging significantly increased Cd bioavailability by 27.5 % and 53.9 % in BCB and BCC, respectively. The activation of Cd from biochar may be due to the decrease of biochar pH and persistent free radicals (PFRs) and the increase of specific surface area (SSA) and O-contained functional groups in biochars. Two biochars at dosages of 2 % and 5 % rates did not change soil pore water Cd, but BCB and BCC at 10 % increased pore water Cd by 17.3 % and 219 %, respectively after SAR aging. SAR aging significantly increased the bioavailability of Cd in BCB and BCC treated soils than those before SAR aging. BCB application enhanced the biomass of lettuce (Lactuca sativa L.) and decreased the uptake of Cd. However, BCC addition at 10 % decreased the biomass of lettuce and increased the accumulation of Cd. In summary, endogenous Cd in biochar from contaminated soils has a potential environmental risk to plants and human health and the negative effects of endogenous pollutants from the biochars should be further investigated.
Assuntos
Chuva Ácida , Poluentes Ambientais , Poluentes do Solo , Humanos , Cádmio/análise , Lactuca , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal , Solo , ÁguaRESUMO
Biotic transformation of imidacloprid (IMD) has been widely investigated in the environments. However, little was known about IMD degradation via abiotic pathways, such as reactive oxygen species (ROS)-based oxidation processes. Here we systematically investigated the mechanism of hydroxyl radical (â¢OH) production and the associated IMD degradation in the goethite (α-FeOOH)-based Fenton-like systems. Results showed that IMD can be efficiently degraded in the α-FeOOH/H2O2 systems, with degradation rate exceeded 80% within 48 h. Based on the examination of electron paramagnetic resonance (EPR) and chemical probes, â¢OH was identified as the key ROS that responsible for IMD degradation. IMD can be decomposed via hydroxylation or removal of -N-NO2 to produce hydroxylated IMD, cyclic urea and 6-chloronicotinic acid, with the associated toxicities also evaluated. In addition, the increasing H2O2 concentration and decreasing solution pH both significantly increased IMD degradation. This study provides theoretical understanding for the implications of soil mineral-based Fenton-like reactions in the abiotic transformation of pesticide pollutants.
Assuntos
Peróxido de Hidrogênio , Ferro , Espécies Reativas de Oxigênio , Minerais , OxirreduçãoRESUMO
In this study, iron selenide nanoparticles (FeSe2) were synthesized and applied in Fenton-like reactions for degradation of pollutants. It was found that FeSe2 exerts excellent catalytic reactivity toward different oxidants including peroxymonosulfate (PMS), peroxydisulfate, and H2O2, which can degrade a wide range of pollutants such as 2,4,4'-trichlorobiphenyl, bisphenol A, sulfamethoxazole, chlortetracycline, and perfluorooctanoic acid, with the degradation efficiency and TOC removal of pollutants reaching 55-95 and 20.3-50.9%, respectively. The mechanism of PMS activation by FeSe2 was elucidated, and the synergistic effect between Fe and Se for PMS activation was discovered to be the dominant catalytic mechanism, as evidenced by free-radical quenching, electron paramagnetic resonance, and density functional theory studies. Briefly, the Fe(II) site on the FeSe2 surface (111) accounted for PMS activation, while the reducing Se species on the surface not only acted as an electron donor contributing to Fe(II) regeneration but also produced Se vacancies further facilitating Fe(II) regeneration to improve the performance of PMS activation. In addition, FeSe2 exhibited high catalytic activity and stability for PMS activation with different pH, and can degrade PCBs efficiently in the presence of anions, natural organic matter water matrices or in complex soil eluents. This study presents the development and evaluation of FeSe2 as a novel and highly efficient activator that exhibits promise for practical applications for the degradation of pollutants in wastewater and soil wash eluent with Fenton-like reactions.
Assuntos
Poluentes Ambientais , Ferro , Peróxido de Hidrogênio , PeróxidosRESUMO
Iron (Fe) oxides are intimately coupled with phosphorus and closely associated with the bioavailability of potential toxic elements (PTEs) in soil. Thus, Fe oxides may influence the stabilization of PTEs in contaminated soils amended by phosphorus. To evaluate the effects of hematite (HMT) on the stabilization of PTEs, 1-5% (by weight) of HMT was added into a contaminated red soil amended with hydroxyapatite (HAP) to simulate naturally occurring Fe oxides. The stabilization efficiencies of soil copper (Cu) and cadmium (Cd) amended with HAP in soils with low, moderate, and high content of HMT were assessed after a 60-day incubation. HAP treated the soil with high rate HMT decreased the CaCl2-extractable and acid-soluble fractions of Cu and Cd than that of HAP alone. In particular, CaCl2-extactable Cu and Cd in the soil with 5% HMT amended by HAP were 91-95% and 41-68% lower than those amended with only HAP. High content of HMT in soil could decrease the concentration of labile phosphorus in the presence of HAP, but it did not increase the concentration of NaOH-extractable inorganic phosphorus (the fraction bound to Fe oxides). The concentrations of free and crystalline Fe oxides were significantly increased by adding high dosages of HMT with or without HAP. High content of HMT in soil amended by HAP reduced metal phytotoxicity and uptake by wheat shoots than the soil containing HAP without HMT. The results indicate that HMT can promote Cu and Cd stabilization while decrease labile phosphorus in red soil amended with HAP, suggesting that phosphorus-based amendments combined with Fe oxides can be used to stabilize PTEs in contaminated red soils.
Assuntos
Cádmio/análise , Cobre/análise , Durapatita/química , Compostos Férricos/química , Fósforo/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Cádmio/metabolismo , China , Cobre/metabolismo , Fósforo/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismoRESUMO
Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu2+ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu2+, and the Langmuir model could best represent the adsorption characteristics of Cu2+ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu2+ was spontaneous and endothermic in nature. The adsorptions of Cu2+ onto the modified biomass ash followed pseudo-second-order kinetics.
Assuntos
Biomassa , Cobre/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados/química , Centrais Elétricas , Propriedades de Superfície , Termodinâmica , Água , Purificação da Água/métodosRESUMO
This study evaluated the efficiency of apatite, lime and charcoal in regulating Cu and Cd leachability (toxicity characteristic leaching and synthetic precipitation leaching procedures), availability (CaCl2 and MgCl2) and bioaccessibility (simplified bioaccessibility extraction test) in a heavy metal-contaminated soil. Both soil pH and soil organic carbon content were investigated during the five-year field study. The results showed that soil pH and soil organic carbon content increased with application of amendments, but decreased with time in both the control and amended plots. Moreover, the leachability, availability and bioaccessibility of Cu and Cd in amended soils all significantly decreased compared with the control, but increased over time. Pearson's correlation analysis showed that soil pH was significantly negatively correlated with the concentrations of available, leachable and bioaccessible Cu and Cd. Bioaccessible Cu and Cd were positively correlated with the concentrations of available and leachable Cu and Cd, but they were not significantly correlated with soil total Cu and total Cd. Stepwise multiple regression analysis indicated that the variability in bioaccessible Cu and Cd was well explained by MgCl2-extractable Cu, CaCl2-extractable Cd and pH, respectively. Although the longevity of amendments decreased with time, apatite was the most effective in decreasing the availability of Cu, compared with lime and charcoal. These findings provide valuable insights for risk management during long-term in situ immobilization of heavy metals in contaminated soils.
RESUMO
Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.
RESUMO
Rice cadmium (Cd) contamination is one of the critical agricultural issues. Breeding of low-Cd-accumulating cultivar is an effective approach to reduce Cd bioaccumulation in rice. To investigate the molecular mechanism underlying Cd transport in rice, the functions of nodes in Cd transport are explored. The results show that different nodes have different functions of Cd transport in the rice plant and the physiological structure of the first node under panicle (N1) determine the Cd accumulation in the brown rice. The upper nodes can redistribute the Cd transport in aboveground tissues. The expressions of Cd-efflux transporter genes (OsLCT1 and OsHMA2) located on the plasma-membrane are the main factors affecting the Cd transport form node to brown rice, which are more depended on the node functions but not the node Cd concentrations. Lower expressions of OsLCT1 and OsHMA2 in N1 result in lower Cd transport from node to brown rice. The size of vascular-bundle (VB) areas in the junctional node with the flag leaf can determine the expression of OsHMA2 and the expression of OsLCT1 positively correlated with the Cd transport ability of first node (N1). The expressions of OsVIT2 and OsABCC1 cannot allow Cd to be immobilized into the vacuoles in node. The VB structure and Cd transporter gene expression level of N1 proved that the Cd concentration of N1 can be used as an important indicator for screening low-Cd-accumulating cultivars. The major implication is that selecting or breeding cultivars with lower Cd accumulations in N1 could be an effective strategy to reduce Cd accumulation in rice grains.
Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Poluentes do Solo/análise , Melhoramento Vegetal , Folhas de Planta/químicaRESUMO
Due to the wide sources of biomass raw materials and the lack of limits for the endogenous pollutants in biochar and their dosage, some biochar with high endogenous pollutants may be used for environmental remediation, which results in potential environmental risks. In this study, three biochars were prepared from the straws of Pennisetum sp. grown in clean, moderately polluted and highly polluted soils, respectively. The total endogenous copper (Cu) and cadmium (Cd), acid-soluble fraction, and persistent free radical (PFRs) distribution in biochars were investigated, and their biotoxicities were evaluated based on wheat root elongation inhibition rate and antioxidant enzyme activity. The results indicated that total Cu in Jiuniu biochar from the highly polluted soil and total Cd in Shuiquan biochar from the moderately-polluted soil were 3.73 and 4.43 times higher than that in Hongrang biochar from the clean soil, respectively. Moreover, acid-soluble Cu in Jiuniu biochar was 3.32 and 2.84 times higher than that in Shuiquan and Hongrang biochar, respectively, and acid-soluble Cd in Shuiquan and Jiuniu biochar was 7.95 and 5.11 times higher than that in Hongrang biochar, respectively. All three biochars had PFRs with adjacent oxygen atoms centered on carbon and followed the order of Hongrang>Jiuniu>Shuiquan. Three biochar leaching solutions significantly inhibited wheat root elongation but enhanced the enzyme activities of SOD, POD, and CAT for the wheat seedlings compared with that in the control. In particular, the highest inhibition rate (27.7%) was found in Jiuniu biochar. This study indicated that the interaction of endogenous heavy metals and PFRs in biochar exhibited significant biotoxicity to wheat seedlings. In the future, more attention should be paid to the potential environmental toxicity of endogenous pollutants from biochar to avoid new environmental pollution problems.
Assuntos
Poluentes Ambientais , Pennisetum , Cádmio/toxicidade , Poluição Ambiental , Antioxidantes , PlântulaRESUMO
The atmospheric deposition of copper (Cu) and cadmium (Cd) was monitored in eight sites around a Cu smelter with similar distance to verify whether tree leaf and ring can be used as bio-indicators to track spatial pollution record. Results showed that total atmospheric deposition of Cu (103-1215 mg/m2/year) and Cd (3.57-11.2 mg/m2/year) were 4.73-66.6 and 3.15-12.2 times higher than those in background site (164 mg/m2/year and 0.93 mg/m2/year). The frequencies of wind directions significantly influenced the atmospheric deposition of Cu and Cd, and the highest atmospheric deposition of Cu and Cd were at the prevalent northeastern wind (JN), and low frequency south (WJ) and north (SW) winds for the lowest deposition fluxes. Since the bioavailability of Cd was higher than that of Cu, the atmospheric deposition of Cd was more easily adsorbed by tree leaf and ring, resulting in only significant relation between atmospheric Cd deposition and Cinnamomum camphora leaves and tree ring Cd. Although tree rings cannot correctly record the atmospheric Cu and Cd deposition, higher concentrations in the indigenous tree rings than the transplanted tree rings suggested that tree rings can reflect to some extent the variations of atmospheric deposition. Generally, spatial pollution of atmospheric deposition of heavy metals cannot reflect the distribution of soil total and available metals around the smelter, and only camphor leaf and tree ring can bio-indicate Cd deposition. A major implication of these findings is that leaf and tree ring can serve for biomonitoring purposes to assess the spatial distribution of atmospheric deposition metal with high bioavailability around a pollution source with similar distance.
Assuntos
Metais Pesados , Poluentes do Solo , Cobre , Cádmio , Cânfora , Monitoramento Ambiental/métodos , Metais Pesados/análise , Solo , Folhas de Planta/química , Poluentes do Solo/análise , ChinaRESUMO
Excess cadmium (Cd) in rice precipitated by Cd contamination in paddy soils is a global human health threat and rational response is urgently needed. In this study, attapulgite-modified hydrochar (CA) and the montmorillonite-modified hydrochar (CM) were utilized in Cd-contaminated paddy soils at 0.5% (w/w) and 1% (w/w) application rates to investigate the effects of these clay-hydrochar composites on rice growth and soil Cd availability. The results show that the utility of CA and CM resulted in a significant increase in rice yield, especially at 1% application rate, which extended rice yield by 46.7-50.0% compared to 0.5% application rate. This is related to the Cd fixation and nutrient sequestration of the acidic functional groups on the surface of CA and CM. Additionally, CA-1% and CM-1% reduced the Cd concentration in rice seeds by 26.9-28.1% relative to the control. Notably, CA-1% showed the capacity to passivate Cd at the early stage of rice transplanting, lowering the proportion of Cd in the ion exchange state by 41.6% compared to the control, and this passivation effect persisted until the late stage of transplanted rice. The soil microbial community consequences showed that CA and CM did not significantly change the horizontal composition of the soil bacterial phylum and species diversity, indicating that CA and CM had excessive soil microbial adaptability. Moreover, results of correlation and Canonical Correspondence Analysis confirm that microbial genera responded significantly to the soil Cd morphologies, revealing the importance of CA and CM in the remediation of Cd-contaminated soils by influencing microorganisms. Our findings provide clay-hydrochar composites as a low-cost approach to effectively mitigate soil Cd contamination and improve the security and quality of rice.
Assuntos
Microbiota , Oryza , Poluentes do Solo , Cádmio/análise , Argila , Humanos , Sementes/química , Solo , Poluentes do Solo/análiseRESUMO
Phosphorus-based biochar can effectively immobilize lead (Pb) in soils, but the effects of soluble and insoluble phosphate on the remediation efficiency of Pb and phosphorus (P) release risks remain largely unknown. In this study, three biochars were produced from reed (Phragmites australis L.) straw, potassium dihydrogen phosphate (PDP, soluble) and hydroxyapatite (HAP, insoluble) modified reed straws and marked as BC, BCP, and BCH, respectively. Pb adsorptions and immobilizations by the three biochars and their P release risks were investigated. The P release kinetics of the three biochars were all fitted with the pseudo-second-order kinetic model and the P-release capacity followed the order of BCP > BCH > BC. The sorption isotherms of Pb2+ by three biochars were better described using the Langmuir model and the maximum adsorption capacities of BCP (59.3 mg/g) and BCH (58.8 mg/g) were higher than that of BC (48.1 mg/g). However, the P concentrations remained in BCP treated solution were significantly higher than those in BCH and BC under initial Pb2+ concentrations in the ranges of 5-25 mg/L. Soil pH and available P were increased with the increasing dosage of BCP and BCH, decreasing CaCl2-extractable Pb concentrations. BCH was more effective to decrease the exchangeable Pb and transform it into iron/manganese oxides and residual fractions. Compared to BC, BCH applications in the range of 2-5% can significantly increase labile P by 15.2-17.7%, but 21.0-33.6% for BCP, indicating BCP had a higher P release risk. The major implication is that HAP-modified biochar can effectively immobilize Pb and decrease P release risks compared to soluble P-modified biochar.
Assuntos
Poluentes do Solo , Solo , Adsorção , Carvão Vegetal , Chumbo , Fosfatos , Fósforo , Medição de Risco , Poluentes do Solo/análiseRESUMO
Hydroxyapatite (HAP) can effectively immobilize soil heavy metals, but excess phosphate would be released to aquatic ecosystem, resulting in eutrophication. This study investigated the effects of ferrihydrite (FH) on the HAP immobilization of copper (Cu) and cadmium (Cd) and their reduction of phosphorus release under flooding-drainage alternation conditions. Results showed that the incorporation of HAP and FH significantly increased soil solution pH and decreased Cu2+ and Cd2+ concentrations. Applications of FH, HAP, and FH-HAP (FH and HAP combination) can all enhance soil pH and reduce CaCl2-extractable and exchangeable Cu and Cd, but HAP addition increased soluble phosphate by 6.60-7.77 times compared to control. However, FH-HAP application can significantly reduce phosphate release by 92.7-99.7% compared to HAP application. FH-HAP was the most effective to reduce exchangeable Cu and Cd by 49.8-93.4% and 50.9-88.8% and decreased labile and moderately labile phosphorus by 34.0-74.4% and 13.5-18.6%, respectively, while increased stable phosphorus by 22-45.1% than single HAP. All FH treatments significantly increased amorphous iron oxides by the factors of 4.66-20.8, but only 3% and 5% of FH applications slightly enhanced crystal iron oxides by the factors of 0.81-1.27. The major implication is that the combination of FH and HAP can not only immobilize of Cu and Cd, but also reduce the risk of phosphate release by HAP addition.
Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Cobre/análise , Durapatita , Ecossistema , Compostos Férricos , Solo , Poluentes do Solo/análiseRESUMO
Biochar is widely used for environmental remediation. However, the effects of aging on the bioavailability of trace metals in biochar-amended soil remain largely unknown, especially for the biochars with various concentrations of endogenous metals. In this study, three biochars marked as BB, MB, and HB were produced from the straws of Pennisetum sinese grown in background soil, moderately-, and highly-polluted soils by trace metals, respectively. We distinguished the effects of dry-wet (DW) and freeze-thaw (FT) aging on the bioavailability of copper (Cu) and cadmium (Cd) from soil particles, the biochar interior, and the surface of biochar. The adsorption capacities of Cu2+ and Cd2+ followed the order of BB > MB > HB. DW and FT aging both increased the adsorption capacity of Cu2+, but decreased that of Cd2+ in the three biochars, resulting in a reduction in Cu bioavailability and increase in Cd bioavailability in the biochars after the saturated adsorption of Cu2+ and Cd2+. The incorporation of the three biochars decreased Cu bioavailability compared to the control after incubation for 30d, while the addition of MB increased Cd bioavailability. DW and FT aging decreased Cu bioavailability in biochar-amended soil by decreasing the bioavailability of Cu adsorbed on the biochar surface and immobilized by soil particles. Meanwhile, aging decreased Cd bioavailability by decreasing the bioavailability of Cd immobilized by soil particles. Overall, environmental risk would be increased by the application of biochars with high endogenous Cd. The major implications are that biochar dosage and environmental risk should be carefully assessed before large-scale, continuous application, especially for biochars containing high contents of endogenous trace metals.
Assuntos
Poluentes do Solo , Solo , Disponibilidade Biológica , Cádmio/análise , Carvão Vegetal , Cobre , Poluentes do Solo/análiseRESUMO
Minimization of Cd accumulation in wheat is an effective strategy to prevent Cd hazard to human. This study compared and highlighted the roles of soil and foliar applications of Se and Si effects on Cd accumulation and toxicity in soft and durum wheat. Soil Se (0.5-1.0 mg kg-1) and Si (3-6 mg kg-1) applications provided an effective strategy to reduce wheat grain Cd concentrations of both wheat varieties by 59-61 % and 16-30 %, but foliar Se (0.125-0.25 mM) and Si (2.5-5 mM) application reduced grain Cd of soft wheat by 20-36 %. Both soil and foliar Se and Si applications significantly alleviated Cd toxicity by regulation of Cd transport genes, as reflected by increased the grain yield and antioxidant enzymes activities, and reduced MDA in wheat tissues. Selenium applications were more effective than Si on the reduction of Cd-induced toxicity and concentrations in soft wheat, but not in durum wheat due to more tolerant to Cd. Downregulation of influx transporter (TaNramp5) and upregulation of efflux transporter (TaTM20 and TaHMA3) in soft wheat may contribute to the Si/Se-dependent Cd mitigation and enhance the tolerance to toxic Cd. Overall, Se/Si applications, especially soil Se, can be efficiently used for reducing grain Cd uptake from Cd-contaminated soils.
Assuntos
Selênio , Poluentes do Solo , Antioxidantes , Cádmio/análise , Cádmio/toxicidade , Humanos , Silício , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , TriticumRESUMO
Biogas slurry (BS) and bio-waste hydrothermal carbonization aqueous phase (HP) are nutrient-rich wastewater. To prevent environment contamination, transforming BS and HP into synthetic fertilizers in the agricultural field can potentially realize resource utilization. We hypothesized that acidic HP could neutralize alkaline BS, adjusting floodwater pH from 6.88 to 8.00 and mitigating ammonia (NH3) volatilization from the paddy soil. In this soil column study, the mixture of BS and HP was applied to paddy soil to substitute 50%, 75%, and 100% to urea. With a low (L) or high (H) ratio of HP, treatments were labeled as BCL50, BCL75, BCL100, BCH50, BCH75, and BCH100. Results showed that microbial byproduct- and fulvic acid-like substance were the main components in BS and HP using 3D-EEM analysis, respectively. Co-application of BS and HP mitigated the NH3 volatilization by 4.2%-65.5% compared with CKU. BCL100 and BCH100 treatments significantly (P < 0.05) mitigated NH3 volatilization by 65.5% and 56.8%, which also significantly (P < 0.05) mitigated the yield-scale NH3 volatilization by 49.6% and 42.3%, compared with CKU. The low NH4+-N concentration and pH value in floodwater were the main reason explained the NH3 mitigation. Therefore, this study demonstrated that BS and HP co-application can substitute the urea as a valuable N fertilizer in a rational rate and meanwhile mitigate the NH3 volatilization. This study will provide new ideas for the utilization of BS and HP resources in the context of ammonia mitigation.
Assuntos
Fertilizantes , Oryza , Agricultura , Amônia/análise , Biocombustíveis , Fertilizantes/análise , Nitrogênio/análise , Solo , Ureia , VolatilizaçãoRESUMO
To study the remediation effect of hydroxyapatite with different particle sizes, a field in situ experiment was carried out by adding conventional hydroxyapatite (0.25 mm) and microhydroxyapatite (3 µm) and nanohydroxyapatite (40 nm) to the contaminated soil and planting Elsholtzia splendens. The distribution and migration of copper (Cu) and cadmium (Cd) in soil were investigated after 4 years. The results show that the application of three different particle sizes of hydroxyapatite significantly raise the soil pH, total phosphorus, and soil organic carbon. Moreover, the addition of hydroxyapatite can reduce the EXC fraction of Cu and Cd by 73.7%-80.1% and 20.8%-35.2%, respectively. In addition, the concentrations of Cu and Cd in >2 mm, 0.25-2 mm, 0.053-0.25 mm, and <0.053 mm aggregate are significantly increased. This improvement indicates that there are risks which may cause the increasing of total Cu and Cd in the soil where the pollution sources still exist. Furthermore, the content of soil colloid is significantly increased, and the colloidal Cu and Cd distribution percentage have been significantly increased by 49.9%-120% and 30.3%-181%. This result illustrates that the application of hydroxyapatite may greatly increase the possibility of colloid and dust migration of Cu and Cd.
RESUMO
Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO3) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd2+ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g-1 (initial Cd2+ concentration was 50 mg L-1), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd2+ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd2+. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd2+ removal from water.