Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 80(22): 1222-1229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880816

RESUMO

Epigenetic processes such as DNA methylation are essential for processes of gene expression in normal mammalian development. DNA methyltransferases (DNMT) are responsible for initiating and maintaining DNA methylation. It is known that 5-Aza-CdR, an inhibitor of DNMT induces cytotoxicity by reducing DNMT activity in various tumor cell lines. However, disturbances in neuronal DNA methylation may also play a role in altered brain functions. Thus, it was of interest to determine whether alterations in DNA methylation might be associated with neuronal functions by using 5-Aza-CdR, on mouse hippocampus-derived neuronal HT22 cell line. In particular, the aim of this study was to investigate the effects of 5-Aza-CdR on cell growth inhibition, cell cycle arrest, apoptosis as well as the expression levels of DNMT in HT22 cells. HT22 cells were incubated with 5 or 20 µmol/L 5-Aza-CdR for 24 h. Data showed that 5-Aza-CdR at both concentrations significantly inhibited proliferation of HT22 cells and exacerbated cytoplasmic vacuolization. Flow cytometry analysis demonstrated that 5-Aza-CdR treatment at both concentrations decreased early apoptosis but enhanced late apoptosis. Cell cycle analysis illustrated that 5-Aza-CdR treatment induced S phase arrest. Further, incubation with 5-Aza-CdR produced a down-regulation in expression of mRNA and protein DNMT1 and 3A but no marked changes were noted in DNMT 3B and p21 expression. In addition, DNMT1 activity was significantly decreased at both 5-Aza-CdR concentrations. Evidence indicates that 5-Aza-CdR induced cytotoxicity was associated with altered mRNA and protein expression of DNMT 1 and 3A associated with reduced DNMT1 activity in HT22 cells which might affect brain functions.


Assuntos
Azacitidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Azacitidina/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Decitabina , Hipocampo/citologia , Camundongos
2.
Int J Mol Sci ; 17(1)2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26742033

RESUMO

Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.


Assuntos
Quitina/química , Quitosana/química , Nanopartículas/química , Acetilação , Dureza , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
3.
J Mech Behav Biomed Mater ; 107: 103743, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32364947

RESUMO

Bamboo has been widely utilized as a load bearing material in building construction since ancient times by taking advantage of its excellent mechanical performances under loading as well as its low density and rapid growth. Applications of bamboo to engineering, architecture, and infrastructure require an in-depth understanding of the relationship between its morphology and mechanics, including how this regularly spaced segmental structure adapts to taking the applied loads. However, previous research on buckling behavior of structural bamboo considered it as a homogenous tube without multiscale structural features, and no reasonable explanation for the regular segment length was proposed. Here, we have implemented representative volume elements within the framework of finite element analysis to study the mechanical response of a bamboo culm under axial compressive load and systematically investigated how the bamboo's hierarchical structural features (e.g., gradient fiber distribution, periodic nodes, and others) contribute to its compression capacity. We find that column buckling is a critical failure mode that leads to the collapse of the entire structure, which can be disastrous. We observe that the gradient fiber distribution pattern along the radial direction significantly contributes to its strength. We find that the occurrence of fiber deviation at the node region reduces the strength of bamboo. Nevertheless, our results show that structural features such as external ridge and internal diaphragm play the role of reinforcement while the effect is more significant for bamboo than other plants with similar node appearance. Our work provides structural insights into the outstanding mechanics of bamboo. Such information could provide a guide for engineers to predict the material mechanics according to its structure, design bamboo-inspired composite materials, and construct high-performance architectures with bamboo accordingly.


Assuntos
Sasa , Análise de Elementos Finitos , Suporte de Carga
4.
Neural Regen Res ; 15(12): 2362-2368, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594061

RESUMO

Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice, accompanied by the downregulation of DNA methyltransferases (DNMTs) in the brain. However, the roles played by DNMTs in the multiple neuroprotective mechanisms associated with hypoxic preconditioning remain poorly understood. This study aimed to establish an in vitro model of hypoxic preconditioning, using a cultured mouse hippocampal neuronal cell line (HT22 cells), to examine the effects of DNMTs on the endogenous neuroprotective mechanisms that occur during hypoxic preconditioning. HT22 cells were divided into a control group, which received no exposure to hypoxia, a hypoxia group, which was exposed to hypoxia once, and a hypoxic preconditioning group, which was exposed to four cycles of hypoxia. To test the ability of hypoxic preadaptation to induce hypoxic tolerance, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay. Cell viability improved in the hypoxic preconditioning group compared with that in the hypoxia group. The effects of hypoxic preconditioning on the cell cycle and apoptosis in HT22 cells were examined by western blot assay and flow cytometry. Compared with the hypoxia group, the expression levels of caspase-3 and spectrin, which are markers of early apoptosis and S-phase arrest, respectively, noticeably reduced in the hypoxic preconditioning group. Finally, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot assay were used to investigate the changes in DNMT expression and activity during hypoxic preconditioning. The results showed that compared with the control group, hypoxic preconditioning downregulated the expression levels of DNMT3A and DNMT3B mRNA and protein in HT22 cells and decreased the activities of total DNMTs and DNMT3B. In conclusion, hypoxic preconditioning may exert anti-hypoxic neuroprotective effects, maintaining HT22 cell viability and inhibiting cell apoptosis. These neuroprotective mechanisms may be associated with the inhibition of DNMT3A and DNMT3B.

5.
Mol Ther Nucleic Acids ; 20: 649-660, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380415

RESUMO

Ischemic tolerance in the brain can be induced by transient limb ischemia, and this phenomenon is termed remote ischemic preconditioning (RIPC). It still remains elusive how this transfer of tolerance occurs. Exosomes can cross the blood-brain barrier, and some molecules may transfer neuroprotective signals from the periphery to the brain. Serum miRNA-126 is associated with ischemic stroke, and exosomal miRNA-126 has shown protective effects against acute myocardial infarction. Therefore, this study aims to explore whether exosomal miRNA-126 from RIPC serum can play a similar neuroprotective role. Exosomes were isolated from the venous serum of four healthy young male subjects, both before and after RIPC. Exosomal miRNA-126 was measured by real-time PCR. The miRNA-126 target sequence was predicted by bioinformatics software. SH-SY5Y neuronal cells were incubated with exosomes, and the cell cycle was analyzed by flow cytometry. The expression and activity of DNA methyltransferase (DNMT) 3B, a potential target gene of miRNA-126, were examined in SH-SY5Y cells. The cell viability of SH-SY5Y cells exposed to oxygen-glucose deprivation (OGD) was also investigated. To confirm the association between miRNA-126 and DNMT3B, we overexpressed miRNA-126 in SH-SY5Y cells using lentiviral transfection. miRNA-126 expression was upregulated in RIPC exosomes, and bioinformatics prediction showed that miRNA-126 could bind with DNMT3B. DNMT levels and DNMT3B activity were downregulated in SH-SY5Y cells incubated with RIPC exosomes. After overexpression of miRNA-126 in SH-SY5Y cells, global methylation levels and DNMT3B gene expression were downregulated in these cells, consistent with the bioinformatics predictions. RIPC exosomes can affect the cell cycle and increase OGD tolerance in SH-SY5Y cells. RIPC seems to have neuroprotective effects by downregulating the expression of DNMTs in neural cells through the upregulation of serum exosomal miRNA-126.

6.
Neural Regen Res ; 14(5): 826-833, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30688268

RESUMO

Bisperoxo (1,10-phenanthroline) oxovanadate (BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases (DNMTs), which would impact the cell cycle. Immortalized mouse hippocampal neuronal precursor cells (HT22) were treated with 0.3 or 3 µM BpV. Proliferation, morphology, and viability of HT22 cells were detected with an IncuCyte real-time video imaging system or inverted microscope and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, respectively. mRNA and protein expression of DNMTs and p21 in HT22 cells was detected by real-time polymerase chain reaction and immunoblotting, respectively. In addition, DNMT activity was measured with an enzyme-linked immunosorbent assay. Effects of BpV on the cell cycle were analyzed using flow cytometry. Results demonstrated that treatment with 0.3 µM BpV did not affect cell proliferation, morphology, or viability; however, treatment with 3 µM BpV decreased cell viability, increased expression of both DNMT3B mRNA and protein, and inhibited the proliferation of HT22 cells; and 3 µM BpV also blocked the cell cycle and increased expression of the regulatory factor p21 by increasing DNMT expression in mouse hippocampal neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA