Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 178(2): 385-399.e20, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257025

RESUMO

To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.


Assuntos
Longevidade , Seleção Genética , Envelhecimento , Animais , Replicação do DNA , Evolução Molecular , Frequência do Gene , Genoma Mitocondrial , Peixes Listrados/classificação , Peixes Listrados/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Filogenia , Filogeografia
3.
Cell ; 163(6): 1539-54, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638078

RESUMO

Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature.


Assuntos
Evolução Biológica , Peixes Listrados/genética , Envelhecimento , Animais , DNA Helicases/genética , Genoma , Humanos , Longevidade , Anotação de Sequência Molecular , Dados de Sequência Molecular , Seleção Genética
4.
BMC Plant Biol ; 24(1): 731, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085772

RESUMO

BACKGROUND: In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS: Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION: FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.


Assuntos
Metaboloma , Folhas de Planta , Transcriptoma , Folhas de Planta/metabolismo , Folhas de Planta/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Pigmentação/genética
5.
Mol Ecol ; 33(4): e17250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179694

RESUMO

While haplotype-specific genetic load shapes the evolutionary trajectory of natural and captive populations, mixed-haplotype assembly and genotyping hindered its characterization in diploids. Herein, we produced two phased genome assemblies of the critically endangered fish Chinese Bahaba (Bahaba taipingensis, Sciaenidae, Teleostei) and resequenced 20 whole genomes to quantify population genetic load at a haplotype level. We identified frame-shifting variants as the most deleterious type, followed by mutations in the 5'-UTR, 3'-UTR and missense mutations at conserved amino acids. Phased haplotypes revealed gene deletions and high-impact deleterious variants. We estimated ~1.12% of genes missing or interrupted per haplotype, with a significant overlap of disrupted genes (30.35%) between haplotype sets. Relative proportions of deleterious variant categories differed significantly between haplotypes. Simulations suggested that purifying selection struggled to purge slightly deleterious genetic load in captive breeding compared to genotyping interventions, and that higher inter-haplotypic variance of genetic load predicted more efficient purging by artificial selection. Combining the knowledge of haplotype-resolved genetic load with predictive modelling will be immensely useful for understanding the evolution of deleterious variants and guiding conservation planning.


Assuntos
Variação Genética , Perciformes , Animais , Haplótipos/genética , Carga Genética , Mutação , Perciformes/genética , China
6.
Mol Ecol ; 30(14): 3610-3623, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998095

RESUMO

Whether freshwater fish colonize remote islands following tectonic or transoceanic dispersal remains an evolutionary puzzle. Integrating dating of known tectonic events with phylogenomics and current species distribution, we find that killifish species distribution is not explained by species dispersal by tectonic drift only. Investigating the colonization of a nonannual killifish (golden panchax, Pachypanchax playfairii) on the Seychelle islands, we found genetic support for transoceanic dispersal and experimentally discovered an adaptation to complete tolerance to seawater. At the macroevolutionary scale, despite their long-lasting isolation, nonannual golden panchax show stronger genome-wide purifying selection than annual killifishes from continental Africa. However, progressive decline in effective population size over a more recent timescale has probably led to the segregation of slightly deleterious mutations across golden panchax populations, which represents a potential threat for species preservation in the long term.


Assuntos
Fundulidae , África , Animais , Evolução Biológica , Fundulidae/genética , Filogenia , Seicheles
7.
Proc Natl Acad Sci U S A ; 114(41): 10936-10941, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973863

RESUMO

The emergence of new species is driven by the establishment of mechanisms that limit gene flow between populations. A major challenge is reconciling the theoretical and empirical importance of assortative mating in speciation with the ease with which it can fail. Swordtail fish have an evolutionary history of hybridization and fragile prezygotic isolating mechanisms. Hybridization between two swordtail species likely arose via pollution-mediated breakdown of assortative mating in the 1990s. Here we track unusual genetic patterns in one hybrid population over the past decade using whole-genome sequencing. Hybrids in this population formed separate genetic clusters by 2003, and maintained near-perfect isolation over 25 generations through strong ancestry-assortative mating. However, we also find that assortative mating was plastic, varying in strength over time and disappearing under manipulated conditions. In addition, a nearby population did not show evidence of assortative mating. Thus, our findings suggest that assortative mating may constitute an intermittent and unpredictable barrier to gene flow, but that variation in its strength can have a major effect on how hybrid populations evolve. Understanding how reproductive isolation varies across populations and through time is critical to understanding speciation and hybridization, as well as their dependence on disturbance.


Assuntos
Evolução Biológica , Ciprinodontiformes/genética , Fluxo Gênico , Especiação Genética , Preferência de Acasalamento Animal , Isolamento Reprodutivo , Animais , Ciprinodontiformes/classificação , Genoma , Sequenciamento Completo do Genoma
9.
Plant Cell ; 27(3): 620-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25783029

RESUMO

Although seed size is one of the most important agronomic traits in plants, the genetic and molecular mechanisms that set the final size of seeds are largely unknown. We previously identified the ubiquitin receptor DA1 as a negative regulator of seed size, and the Arabidopsis thaliana da1-1 mutant produces larger seeds than the wild type. Here, we describe a B3 domain transcriptional repressor NGATHA-like protein (NGAL2), encoded by the suppressor of da1-1 (SOD7), which acts maternally to regulate seed size by restricting cell proliferation in the integuments of ovules and developing seeds. Overexpression of SOD7 significantly decreases seed size of wild-type plants, while the simultaneous disruption of SOD7 and its closest homolog DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4/NGAL3) increases seed size. Genetic analyses indicate that SOD7 and DPA4 act in a common pathway with the seed size regulator KLU to regulate seed growth, but do so independently of DA1. Further results show that SOD7 directly binds to the promoter of KLUH (KLU) in vitro and in vivo and represses the expression of KLU. Therefore, our findings reveal the genetic and molecular mechanisms of SOD7, DPA4, and KLU in seed size regulation and suggest that they are promising targets for seed size improvement in crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomia & histologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Repressoras/metabolismo , Sementes/anatomia & histologia , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Proliferação de Células , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Endosperma/embriologia , Endosperma/genética , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Supressores , Dados de Sequência Molecular , Mutação , Tamanho do Órgão , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Sementes/citologia , Frações Subcelulares/metabolismo , Supressão Genética , Fatores de Transcrição/genética
10.
PLoS Genet ; 11(3): e1005041, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768654

RESUMO

Despite its role in homogenizing populations, hybridization has also been proposed as a means to generate new species. The conceptual basis for this idea is that hybridization can result in novel phenotypes through recombination between the parental genomes, allowing a hybrid population to occupy ecological niches unavailable to parental species. Here we present an alternative model of the evolution of reproductive isolation in hybrid populations that occurs as a simple consequence of selection against genetic incompatibilities. Unlike previous models of hybrid speciation, our model does not incorporate inbreeding, or assume that hybrids have an ecological or reproductive fitness advantage relative to parental populations. We show that reproductive isolation between hybrids and parental species can evolve frequently and rapidly under this model, even in the presence of substantial ongoing immigration from parental species and strong selection against hybrids. An interesting prediction of our model is that replicate hybrid populations formed from the same pair of parental species can evolve reproductive isolation from each other. This non-adaptive process can therefore generate patterns of species diversity and relatedness that resemble an adaptive radiation. Intriguingly, several known hybrid species exhibit patterns of reproductive isolation consistent with the predictions of our model.


Assuntos
Especiação Genética , Hibridização Genética , Isolamento Reprodutivo , Seleção Genética , Fluxo Gênico , Deriva Genética , Variação Genética , Genética Populacional , Modelos Genéticos , Modelos Teóricos
11.
Proc Biol Sci ; 284(1854)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515207

RESUMO

Mate choice can play a pivotal role in the nature and extent of reproductive isolation between species. Mating preferences are often dependent on an individual's social experience with adult phenotypes throughout development. We show that olfactory preference in a swordtail fish (Xiphophorus malinche) is affected by previous experience with adult olfactory signals. We compare transcriptome-wide gene expression levels of pooled sensory and brain tissues between three treatment groups that differ by social experience: females with no adult exposure, females exposed to conspecifics and females exposed to heterospecifics. We identify potential functionally relevant genes and biological pathways differentially expressed not only between control and exposure groups, but also between groups exposed to conspecifics and heterospecifics. Based on our results, we speculate that vomeronasal receptor type 2 paralogs may detect species-specific pheromone components and thus play an important role in reproductive isolation between species.


Assuntos
Ciprinodontiformes/genética , Preferência de Acasalamento Animal , Isolamento Reprodutivo , Olfato , Aprendizado Social , Animais , Ciprinodontiformes/fisiologia , Feminino , Expressão Gênica , Comportamento Sexual Animal
12.
Bioinformatics ; 32(7): 1103-5, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26615212

RESUMO

UNLABELLED: We introduce a new forward-time simulator, Admix'em, that allows for rapid and realistic simulations of admixed populations with selection. Complex selection can be achieved through user-defined fitness and mating-preference probability functions. Users can specify realistic genomic landscapes and model neutral SNPs in addition to sites under selection. Admix'em is designed to simulate selection in admixed populations but can also be used as a general population simulator. Usage and examples are in the supplement. AVAILABILITY AND IMPLEMENTATION: C ++ and OpenMP, supports 64-bit Linux/Unix-like platforms. https://github.com/melop/admixem CONTACT: rcui@age.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica/métodos , Polimorfismo de Nucleotídeo Único , Epistasia Genética , Genética Populacional , Genoma , Seleção Genética , Software
13.
Mol Ecol ; 25(11): 2661-79, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26937625

RESUMO

A rapidly increasing body of work is revealing that the genomes of distinct species often exhibit hybrid ancestry, presumably due to postspeciation hybridization between closely related species. Despite the growing number of documented cases, we still know relatively little about how genomes evolve and stabilize following hybridization, and to what extent hybridization is functionally relevant. Here, we examine the case of Xiphophorus nezahualcoyotl, a teleost fish whose genome exhibits significant hybrid ancestry. We show that hybridization was relatively ancient and is unlikely to be ongoing. Strikingly, the genome of X. nezahualcoyotl has largely stabilized following hybridization, distinguishing it from examples such as human-Neanderthal hybridization. Hybridization-derived regions are remarkably distinct from other regions of the genome, tending to be enriched in genomic regions with reduced constraint. These results suggest that selection has played a role in removing hybrid ancestry from certain functionally important regions. Combined with findings in other systems, our results raise many questions about the process of genomic stabilization and the role of selection in shaping patterns of hybrid ancestry in the genome.


Assuntos
Evolução Biológica , Ciprinodontiformes/genética , Hibridização Genética , Animais , Ciprinodontiformes/classificação , Genoma , Genômica , Filogenia , Análise de Sequência de DNA
14.
Plant J ; 70(6): 929-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22251317

RESUMO

Seed size in higher plants is coordinately determined by the growth of the embryo, endosperm and maternal tissue, but relatively little is known about the genetic and molecular mechanisms that set final seed size. We have previously demonstrated that Arabidopsis DA1 acts maternally to control seed size, with the da1-1 mutant producing larger seeds than the wild type. Through an activation tagging screen for modifiers of da1-1, we have identified an enhancer of da1-1 (eod3-1D) in seed size. EOD3 encodes the Arabidopsis cytochrome P450/CYP78A6 and is expressed in most plant organs. Overexpression of EOD3 dramatically increases the seed size of wild-type plants, whereas eod3-ko loss-of-function mutants form small seeds. The disruption of CYP78A9, the most closely related family member, synergistically enhances the seed size phenotype of eod3-ko mutants, indicating that EOD3 functions redundantly with CYP78A9 to affect seed growth. Reciprocal cross experiments show that EOD3 acts maternally to promote seed growth. eod3-ko cyp78a9-ko double mutants have smaller cells in the maternal integuments of developing seeds, whereas eod3-1D forms more and larger cells in the integuments. Genetic analyses suggest that EOD3 functions independently of maternal factors DA1 and TTG2 to influence seed growth. Collectively, our findings identify EOD3 as a factor of seed size control, and give insight into how plants control their seed size.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas com Domínio LIM/metabolismo , Mutagênese Insercional , Fatores de Transcrição/metabolismo
15.
Zootaxa ; 3670: 177-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26438933

RESUMO

A new goby species Tridentiger radiatus sp. nov. is described from Zhuhai, Guangdong Province of China. The new species, found in sympatry with a widely distributed barbeled congener Tridentiger barbatus (Günther, 1861), is one of the only two Tridentiger species known to possess mandibular and cheek barbels. Tridentiger radiatus is diagnosed by having higher longitudinal and transverse scale counts, less developed barbels, unmottled colouration compared to T barbatus, and 3 dusky radiating infraorbital bands. Partial 12s rDNA sequence data obtained from 5 individuals of T radiatus and 2 individuals of T. barbatus, together with published sequence data of other congeners confirmed validity of the new species. The divergence between T. radiatus and T. barbatus well exceeds the divergence of other sister taxa in the same genus. Monophyly of the two barbeled species is supported.


Assuntos
Peixes/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , China , Feminino , Proteínas de Peixes/genética , Peixes/anatomia & histologia , Peixes/genética , Peixes/crescimento & desenvolvimento , Masculino , Dados de Sequência Molecular , Tamanho do Órgão , Filogenia
16.
Plant J ; 61(5): 767-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20003164

RESUMO

Mutant analyses in different eudicotyledonous flowering plants demonstrated that SEPALLATA-like MADS-box genes are required for the specification of sepals, petals, stamens and carpels, and for floral determinacy, thus defining class E floral organ identity genes. SEP-like genes encode MADS-domain transcription factors and constitute an angiosperm-specific gene clade whose members show remarkably different degrees of redundancy and sub-functionalization within eudicots. To better understand the evolutionary dynamics of SEP-like genes throughout the angiosperms we have knocked down SEP-like genes of rice (Oryza sativa), a distant relative of eudicots within the flowering plants. Plants affected in both OsMADS7 and OsMADS8 show severe phenotypes including late flowering, homeotic changes of lodicules, stamens and carpels into palea/lemma-like organs, and a loss of floral determinacy. Simultaneous knockdown of the four rice SEP-like genes OsMADS1, OsMADS5, OsMADS7 and OsMADS8, leads to homeotic transformation of all floral organs except the lemma into leaf-like organs. This mimics the phenotype observed with the sep1 sep2 sep3 sep4 quadruple mutant of Arabidopsis. Detailed analyses of the spatial and temporal mRNA expression and protein interaction patterns corresponding to the different rice SEP-like genes show strong similarities, but also gene-specific differences. These findings reveal conservation of SEP-like genes in specifying floral determinacy and organ identities since the separation of eudicots and monocots about 150 million years ago. However, they indicate also monocot-specific neo- and sub-functionalization events and hence underscore the evolutionary dynamics of SEP-like genes. Moreover, our findings corroborate the view that the lodicules of grasses are homologous to eudicot petals.


Assuntos
Flores/genética , Genes Homeobox , Oryza/genética , Proteínas de Plantas/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Proteínas de Domínio MADS/genética , Interferência de RNA , RNA de Plantas/genética
17.
Curr Biol ; 31(5): 923-935.e11, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33513352

RESUMO

Biologists since Darwin have been fascinated by the evolution of sexually selected ornaments, particularly those that reduce viability. Uncovering the genetic architecture of these traits is key to understanding how they evolve and are maintained. Here, we investigate the genetic architecture and evolutionary loss of a sexually selected ornament, the "sword" fin extension that characterizes many species of swordtail fish (Xiphophorus). Using sworded and swordless sister species of Xiphophorus, we generated a mapping population and show that the sword ornament is polygenic-with ancestry across the genome explaining substantial variation in the trait. After accounting for the impacts of genome-wide ancestry, we identify one major-effect quantitative trait locus (QTL) that explains ~5% of the overall variation in the trait. Using a series of approaches, we narrow this large QTL interval to several likely candidate genes, including genes involved in fin regeneration and growth. Furthermore, we find evidence of selection on ancestry at one of these candidates in four natural hybrid populations, consistent with selection against the sword in these populations.


Assuntos
Evolução Biológica , Ciprinodontiformes/anatomia & histologia , Ciprinodontiformes/genética , Variação Genética , Preferência de Acasalamento Animal , Animais , Feminino , Masculino , Fenótipo , Locos de Características Quantitativas
18.
Nat Commun ; 12(1): 4165, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230464

RESUMO

Insects use sex pheromones as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Despite the profound knowledge of sex pheromones, little is known about the coevolutionary mechanisms and constraints on their production and detection. Using whole-genome sequences to infer the kinship among 99 drosophilids, we investigate how phylogenetic and chemical traits have interacted at a wide evolutionary timescale. Through a series of chemical syntheses and electrophysiological recordings, we identify 52 sex-specific compounds, many of which are detected via olfaction. Behavioral analyses reveal that many of the 43 male-specific compounds are transferred to the female during copulation and mediate female receptivity and/or male courtship inhibition. Measurement of phylogenetic signals demonstrates that sex pheromones and their cognate olfactory channels evolve rapidly and independently over evolutionary time to guarantee efficient intra- and inter-specific communication systems. Our results show how sexual isolation barriers between species can be reinforced by species-specific olfactory signals.


Assuntos
Comunicação , Drosophila/fisiologia , Feromônios/metabolismo , Atrativos Sexuais/fisiologia , Animais , Evolução Biológica , Copulação/fisiologia , Corte , Drosophila melanogaster/fisiologia , Feminino , Masculino , Filogenia , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Especificidade da Espécie
19.
Elife ; 92020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869739

RESUMO

The evolutionary forces shaping life history divergence within species are largely unknown. Turquoise killifish display differences in lifespan among wild populations, representing an ideal natural experiment in evolution and diversification of life history. By combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among wild turquoise killifish populations. We generate an improved reference genome assembly and identify genes under positive and purifying selection, as well as those evolving neutrally. Short-lived populations from the outer margin of the species range have small population size and accumulate deleterious mutations in genes significantly enriched in the WNT signaling pathway, neurodegeneration, cancer and the mTOR pathway. We propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by increasing the genome-wide mutation load, exacerbates the effects of mutation accumulation and cumulatively contribute to the short adult lifespan.


Assuntos
Evolução Molecular , Longevidade/genética , Acúmulo de Mutações , Densidade Demográfica , Envelhecimento/genética , Animais , Evolução Biológica , Ecossistema , Fundulidae , Genoma/genética , Modelos Animais
20.
PLoS One ; 14(3): e0213446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870444

RESUMO

Salvia splendens is a perennial, ornamental herbaceous flower that is widely cultivated as a bedding plant in gardens. The development of novel S. splendens cultivars and investigating the relevant molecular mechanisms are of great significance. In this study, RNA-sequencing and real-time PCR methods were used to analyze the possible molecular mechanism of S. splendens mutant, SX919M. From the wild-type S. splendens 919CK, we firstly selected a natural mutant, SX919M, which displayed multiple branches, clustered spheroids, and radial symmetrical inflorescence with higher numbers of calyces, ovules, stamens, and perianth tubes. Further, the RNA-seq was used to identify the differentially expressed genes (DEGs) in the mutant which included a total of 3568 upregulated and 3290 downregulated unigenes. We further observed that the indole alkaloid biosynthesis pathway showed the highest DEG enrichment, which was supported by a significant increase in the IAA content in mutant SX919M. In addition, we validated three DEGs, namely, CL2200.Contig2_All encoding methyl IAA esterase, CL12462.Contig1_All and CL12462.Contig2_All, which encoded strictosidine synthase, upregulated in mutant SX919M. We selected a novel S. splendens germplasm SX919M with a high ornamental value and determined that the upregulation of IAA biogenesis may be associated with its development.


Assuntos
Salvia/crescimento & desenvolvimento , Salvia/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Anotação de Sequência Molecular , Mutação , Fenótipo , Melhoramento Vegetal , RNA de Plantas/genética , Salvia/metabolismo , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA