Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 916287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237496

RESUMO

Salinity severely inhibits growth and reduces yield of salt-sensitive plants like wheat, and this effect can be alleviated by plant growth regulators and phytohormones, among which abscisic acid (ABA) plays a central role in response to various stressful environments. ABA is highly photosensitive to light disruption, which this limits its application. Here, based on pyrabactin (a synthetic ABA agonist), we designed and synthesized a functional analog of ABA and named B2, then evaluated its role in salt resistance using winter wheat seedlings. The phenotypes showed that B2 significantly improved the salt tolerance of winter wheat seedlings by elevating the biomass. The physiological analysis found that B2 treatment reduced the generation rate of O2 -, electrolyte leakage, the content of proline, and the accumulation of malonaldehyde (MDA) and H2O2 and also significantly increased the contents of endogenous hormones zeatin riboside (ZA) and gibberellic acid (GA). Further biochemical analysis revealed that the activities of various antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were enhanced by B2, and the activities of antioxidase isozymes SOD3, POD1/2, and APX1/2 were particularly increased, largely resembling ABA treatment. The abiotic stress response-related gene TaSOS1 was significantly upregulated by B2, while the TaTIP2;2 gene was suppressed. In conclusion, an ABA analog B2 was capable to enhance salt stress tolerance in winter wheat seedlings by stimulating the antioxidant system, providing a novel regulator for better survival of crops in saline soils and improving crop yield.

2.
Biosci Biotechnol Biochem ; 72(8): 1977-82, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18685202

RESUMO

Salinivibrio costicola subsp. yaniae is a moderately halophilic bacterium which can grow over a wide range of salinity. In response to external osmotic stress (1-3 M NaCl), S. costicola subsp. yaniae can accumulate ectoine, glycine betaine, and glutamate as compatible solutes. We used suicide plasmids pSUP101 to introduce transposon Tn1732 into S. costicola subsp. yaniae via Escherichia coli SM10 mediated by conjugation. One Tn1732-induced mutant, MU1, which was very sensitive to the external salt concentration, was isolated. Mutant MU1 did not grow above 1.5 M NaCl and did not synthesize ectoine, but accumulated Ngamma-acetyldiaminobutyrate, an ectoine precursor, as confirmed by (1)H-NMR analysis. From these data, we concluded that ectoine performs a key role in osmotic adaptation towards high salinity environments in strain S. costicola subsp. yaniae.


Assuntos
Cloreto de Sódio/farmacologia , Vibrionaceae/efeitos dos fármacos , Vibrionaceae/isolamento & purificação , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Sensibilidade e Especificidade , Vibrionaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA