Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 37(1): e5525, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241418

RESUMO

Almonertinib was included in the first-line treatment of non-small cell lung cancer with EGFR T790M mutations by the Chinese Society of Clinical Oncology in 2021. Considering that immunocompromised lung cancer patients are prone to opportunistic fungal infections, and most triazole antifungal drugs are moderate or strong inhibitors of CYP3A4, this study was conducted to develop and validate an accurate and rapid ultra-performance liquid chromatography tandem mass spectrometry method for quantifying almonertinib in plasma and for investigating the pharmacokinetic changes of almonertinib caused by voriconazole and fluconazole in rats. After liquid-liquid extraction with tert-butyl methyl ether, an XSelect HSS T3 column (2.1 × 100 mm, 2.5 µm, Waters) was used for the chromatographic separation of almonertinib and sorafenib-D3 (internal standard). The analytes were detected using an AB Sciex Triple Quad 5,500 mass spectrometer in the positive ionization mode. The method exhibited great linearity (0.5-200 ng/ml, r > 0.997) and stability under the established experimental conditions. All validation experiments were in accordance with the guidelines, and the results were all within the acceptable limits. This method was successfully applied to the researches of pharmacokinetics and drug interactions for almonertinib in rats. Voriconazole and fluconazole significantly altered the pharmacokinetic profiles of almonertinib and increased the systemic exposure of almonertinib in rats to different degrees, but further human trials should be conducted to validate the results.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Voriconazol , Fluconazol/farmacologia , Cromatografia Líquida/métodos , Receptores ErbB , Inibidores de Proteínas Quinases , Mutação , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
2.
J Cell Physiol ; 237(2): 1389-1405, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661912

RESUMO

Heat stress (HS) induced by high ambient temperatures compromises intestinal epithelial cell. However, the underlying mechanisms by which HS causes intestinal barrier dysfunction remain unclear. In this study, we established an in vitro acute-HS-induced intestinal damage using porcine small intestinal epithelial cell (IPEC-J2) that exposed to the high temperatures (43°C) for 2 h. The cell proliferation, apoptosis, tight junction (TJ) barrier integrity and transcriptomic profiles were measured. The results showed that HS decreased cell viability while increased proapoptotic signaling evidenced by Bax/bcl2 ratio, cytochrome C release to cytosol and active-caspase 3 increases (p < 0.01). HS led to decreased transepithelial electrical resistance, increased cell permeability, and downregulated TJ proteins including ZO1, occludin, and claudin 3 (p < 0.05). Transcriptome sequencing and KEGG pathway analysis revealed HS-induced cell cycle arrest and activation of endoplasmic reticulum stress (ERS) response mediated by a critical transcript eif2α and proapoptotic molecule DDIT3 (known as CHOP). Furthermore, inhibition of ERS by 4-phenylbutyrate (4-PBA) administration and knockdown of eif2α and CHOP significantly attenuated IPEC-J2 cells apoptosis (p < 0.05). Transmission electron microscopy analysis suggested that 4-PBA inhibited HS-induced increase in ER lumen diameter, indicating ultrastructural sign of ERS. In addition, HS-induced impairment of TJs was significantly attenuated by 4-PBA (p < 0.05). Collectively, HS induces ERS and activates the p-eif2α/CHOP signaling pathway to impair epithelial barrier integrity through triggering the intestinal epithelial cell apoptosis.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Animais , Apoptose , Resposta ao Choque Térmico , Suínos , Proteínas de Junções Íntimas
3.
Analyst ; 147(18): 4092-4097, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35942920

RESUMO

In this work, we developed a new organic electrochemical probe, 4-(prop-2-yn-1-yloxy)phenol, for the determination of tyrosinase. The designed probe contained a 4-hydroxybenzyloxy moiety for the specific determination of Tyr and a terminal alkyne group for chemical adsorption onto the electrode surface. The oxidation peak of the phenolic group from Pyyp decreased but increased for o-diphenol or o-quinone generated after the reaction between Tyr and Pyyp. The present sensor demonstrated a good linearity with Tyr activity in a dynamic range of 1.0-30 U mL-1. The limit of detection was as low as 0.28 ± 0.12 U mL-1. Moreover, this sensor demonstrated high selectivity for Tyr determination against metal ions, amino acids, ROS and neurotransmitters due to the specific recognition of Tyr. Finally, the developed sensor with high accuracy, high selectivity and long-term stability was successfully applied for evaluating Tyr activity in normal brain homogenate and brain homogenate with Parkinson's disease.


Assuntos
Técnicas Biossensoriais , Monofenol Mono-Oxigenase , Animais , Encéfalo/metabolismo , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Camundongos , Monofenol Mono-Oxigenase/metabolismo
4.
J Dairy Sci ; 105(12): 10007-10019, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36241438

RESUMO

Amino acids are primarily absorbed in the ruminant small intestine, and the small intestine is a target organ prone to oxidative stress, causing intestinal disfunction. Previous study suggested that l-Trp could benefit intestinal function and production performance. This study aimed to explore the effects of l-Trp on hydrogen peroxide (H2O2)-induced oxidative injury in bovine intestinal epithelial cells (BIEC) and the potential mechanism. The effects of l-Trp on cell apoptosis, antioxidative capacity, AA transporters, and the mammalian target of rapamycin (mTOR) signaling pathway were evaluated in BIEC treated with 0.8 mMl-Trp for 2 hours combined with or without H2O2 induction. In addition, to explore whether the effects of 0.8 mMl-Trp on oxidative stress were related to mTOR, an mTOR-specific inhibitor was used. The percentage of apoptosis was measured using flow cytometry. The relative gene abundance and protein expression in BIEC were determined using real-time PCR and Western blot assay, respectively. Results showed l-Trp at 0.4 and 0.8 mM enhanced the cell viability, and it was inhibited by l-Trp at 6.4 mM. l-Tryptophan at 0.4, 0.8, and 1.6 mM remarkably decreased the percentage of apoptosis and enhanced antioxidative capacity in H2O2-mediated BIEC. Moreover, l-Trp at 0.8 mM increased the relative gene abundance and protein expression of antioxidative enzymes and AA transporters, and the mTOR signaling pathway. The mTOR inhibitor lowered the protein expression of large neutral amino acid transporter 1, but the inhibition of mTOR did not alter the activities of catalase and superoxide dismutase or protein expression of alanine-serine-cysteine transporter 2 with or without H2O2 induction. l-Tryptophan increased catalase and superoxide dismutase activities in H2O2-mediated BIEC, although not with a present mTOR inhibitor. l-Tryptophan increased the protein expression of large neutral amino acid transporter 1 and alanine-serine-cysteine transporter 2 in H2O2-mediated BIEC with or without the presence of an mTOR inhibitor. The present work suggested that l-Trp supplementation could alleviate oxidative injury in BIEC by promoting antioxidative capacity and inhibiting apoptosis, and the mTOR signal played vital roles in the alleviation.


Assuntos
Peróxido de Hidrogênio , Triptofano , Bovinos , Animais , Peróxido de Hidrogênio/farmacologia , Triptofano/farmacologia , Triptofano/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Cisteína/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Apoptose , Células Epiteliais/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Serina , Alanina/metabolismo , Mamíferos/metabolismo
5.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080187

RESUMO

Hepatocellular carcinoma (HCC) and type 2 diabetes mellitus (T2DM) are common clinical conditions, and T2DM is an independent risk factor for HCC. Sorafenib and lenvatinib, two multi-targeted tyrosine kinase inhibitors, are first-line therapies for advanced HCC, while canagliflozin, a sodium-glucose co-transporter 2 inhibitor, is widely used in the treatment of T2DM. Here, we developed an ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of canagliflozin, sorafenib, and lenvatinib, and investigated the pharmacokinetic drug interactions between canagliflozin and sorafenib or lenvatinib in rats. The animals were randomly divided into five groups. Groups I-III were gavage administrated with sorafenib, lenvatinib, and canagliflozin, respectively. Group IV received sorafenib and canagliflozin; while Group V received lenvatinib and canagliflozin. The area under the plasma concentration-time curves (AUC) and maximum plasma concentrations (Cmax) of canagliflozin increased by 37.6% and 32.8%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance (CLz/F) of canagliflozin significantly decreased (30.6% and 28.6%, respectively) in the presence of sorafenib. Canagliflozin caused a significant increase in AUC and Cmax of lenvatinib by 28.9% and 36.2%, respectively, and a significant decrease in Vz/F and CLz/F of lenvatinib by 52.9% and 22.7%, respectively. In conclusion, drug interactions exist between canagliflozin and sorafenib or lenvatinib, and these findings provide a reference for the use of these drugs in patients with HCC and T2DM.


Assuntos
Canagliflozina , Compostos de Fenilureia , Quinolinas , Sorafenibe , Animais , Canagliflozina/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Interações Medicamentosas , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Quinolinas/farmacocinética , Ratos , Inibidores do Transportador 2 de Sódio-Glicose/farmacocinética , Sorafenibe/farmacocinética
6.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209080

RESUMO

Lenvatinib is a multi-targeted tyrosine kinase inhibitor that inhibits tumor angiogenesis, but hypertension is the most common adverse reaction. Telmisartan is an angiotensin receptor blocker used to treat hypertension. In this study, a simple ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of lenvatinib and telmisartan, and it was applied to the pharmacokinetic drug interaction study. Plasma samples were treated with acetonitrile to precipitate protein. Water (containing 5 mM of ammonium acetate and 0.1% formic acid) and acetonitrile (0.1% formic acid) were used as the mobile phases to separate the analytes with gradient elution using a column XSelect HSS T3 (2.1 mm × 100 mm, 2.5 µm). Multiple reaction monitoring in the positive ion mode was used for quantification. The method was validated and the precision, accuracy, matrix effect, recovery, and stability of this method were reasonable. The determination of analytes was not interfered with by other substances in the blank plasma, and the calibration curves of lenvatinib and telmisartan were linear within the range of 0.2-1000 ng/mL and 0.1-500 ng/mL, respectively. The results indicate that lenvatinib decreased the systemic exposure of telmisartan. Potential drug interactions were observed between lenvatinib and telmisartan.


Assuntos
Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Compostos de Fenilureia/farmacocinética , Quinolinas/farmacocinética , Espectrometria de Massas em Tandem , Telmisartan/farmacocinética , Animais , Monitoramento de Medicamentos , Estabilidade de Medicamentos , Estrutura Molecular , Compostos de Fenilureia/química , Quinolinas/química , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Telmisartan/química
7.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234746

RESUMO

Sorafenib (SOR), an inhibitor of multiple kinases, is a classic targeted drug for advanced hepatocellular carcinoma (HCC) which often coexists with type 2 diabetes mellitus (T2DM). Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 inhibitor (SGLT2i), is widely used in patients with T2DM. Notably, co-administration of SOR with DAPA is common in clinical settings. Uridine diphosphate-glucuronosyltransferase family 1 member A9 (UGT1A9) is involved in the metabolism of SOR and dapagliflozin (DAPA), and SOR is the inhibitor of UGT1A1 and UGT1A9 (in vitro). Therefore, changes in UGT1A9 activity caused by SOR may lead to pharmacokinetic interactions between the two drugs. The objective of the current study was to develop an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of SOR and DAPA in plasma and to evaluate the effect of the co-administration of SOR and DAPA on their individual pharmacokinetic properties and the mechanism involved. The rats were divided into four groups: SOR (100 mg/kg) alone and co-administered with DAPA (1 mg/kg) for seven days, and DAPA (1 mg/kg) alone and co-administered with SOR (100 mg/kg) for seven days. Liquid-liquid extraction (LLE) was performed for plasma sample preparation, and the chromatographic separation was conducted on Waters XSelect HSS T3 column with a gradient elution of 0.1% formic acid and 5 mM ammonium acetate (Phase A) and acetonitrile (Phase B). The levels of Ugt1a7 messenger RNA (mRNA) were determined in rat liver and intestine using quantitative real-time polymerase chain reaction (qRT-PCR). The method was successfully applied to the study of pharmacokinetic interactions. DAPA caused a significant decrease in the maximum plasma concentrations (Cmax) and the area under the plasma concentration-time curves (AUC0-t) of SOR by 41.6% and 50.5%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance (CLz/F) significantly increased 2.85- and 1.98-fold, respectively. When co-administering DAPA with SOR, the AUC0-t and the elimination half-life (t1/2Z) of DAPA significantly increased 1.66- and 1.80-fold, respectively, whereas the CLz/F significantly decreased by 40%. Results from qRT-PCR showed that, compared with control, seven days of SOR pretreatment decreased Ugt1a7 expression in both liver and intestine tissue. In contrast, seven days of DAPA pretreatment decreased Ugt1a7 expression only in liver tissue. Therefore, pharmacokinetic interactions exist between long-term use of SOR with DAPA, and UGT1A9 may be the targets mediating the interaction. Active surveillance for the treatment outcomes and adverse reactions are required.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Inibidores do Transportador 2 de Sódio-Glicose , Acetonitrilas , Animais , Compostos Benzidrílicos , Carcinoma Hepatocelular/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Glucose/uso terapêutico , Glucosídeos , Glucuronosiltransferase/genética , RNA Mensageiro , Ratos , Reprodutibilidade dos Testes , Sódio , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Sorafenibe/farmacologia , Espectrometria de Massas em Tandem/métodos , Difosfato de Uridina
8.
J Sci Food Agric ; 102(13): 5903-5912, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35437753

RESUMO

BACKGROUND: The present study aimed to investigate whether leucine (Leu) alleviates oxidative injury in bovine intestinal epithelial cells (BIECs) induced by hydrogen peroxide (H2 O2 ), as well as the underlying molecular mechanisms. RESULTS: BIECs were treated with H2 O2 (1 mmol L-1 ) and/or Leu (0, 0.9, 1.8 or 3.6 mmol L-1 ) for 2 h. Leu increased cell viability (P < 0.05) and decreased the release of lactate dehydrogenase (P < 0.05) in BIECs challenged by H2 O2 . Then, the cells were treated with H2 O2 (1 mmol L-1 ) and/or Leu (1.8 mmol L-1 ) for 2 h. Compared with the H2 O2 group, cells treated with Leu and Leu + H2 O2 exhibited increased (P < 0.05) mRNA and protein expression of superoxide dismutase 2 (SOD2), catalase (CAT), glutathione peroxidase 1 (GPx1), heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2). BIECs treatment with Leu significantly reduced (P < 0.05) apoptosis induced by H2 O2 . BIECs were transfected with Nrf2 small interfering RNA (siRNA) for 48 h and/or treated with H2 O2 (1 mmol L-1 ) and/or Leu (1.8 mmol L-1 ) for another 2 h. Transfection with Nrf2 siRNA abrogated the protective effect of Leu against H2 O2 -induced apoptosis and the mRNA and protein expression of SOD2 (P < 0.05). CONCLUSION: These results indicate that Leu promotes the relative expression of antioxidant enzymes (SOD2, CAT and GPx1) and phase II detoxification enzymes (HO-1) by upregulating nuclear Nrf2 and activating the Nrf2 signaling pathway, thus enhancing the antioxidant capacity of cells. © 2022 Society of Chemical Industry.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Bovinos , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/toxicidade , Leucina/metabolismo , Leucina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo
9.
Biomed Chromatogr ; 35(9): e5143, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33856061

RESUMO

A UPLC-MS/MS method was developed to determine the levels of five traditional antipsychotics (APs) (chlorprothixene, perphenazine, fluphenazine, thioridazine, and promethazine) in human plasma with carbamazepine as the internal standard. Samples were extracted using simple liquid-liquid extraction (ethyl acetate/methyl tert-butyl ether, 2:3 v/v); then the analytes were subjected to gradient elution chromatography with a mobile phase composed of 0.1% formic acid in water and acetonitrile. The analytes were separated using a Waters XBridge BEH C18 column (100 × 2.1 mm, 2.5 µm). The linear ranges of chlorprothixene, perphenazine, fluphenazine, thioridazine, and promethazine are 2-250 ng/mL, r > 0.995. The limit of quantitation is 2 ng/mL, and the limit of detection is in the range of 0.1-0.5 ng/mL. The inter-day and intra-day relative standard deviations are less than 10%, and the relative errors are in the range of -5.70 to 7.20%. The recoveries of the five drugs are in the range of 70-109%. The results of methodology verification indicate that this method is simple, economical, sensitive, and suitable for the simultaneous quantification of five traditional APs in human plasma.


Assuntos
Antipsicóticos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Idoso , Feminino , Humanos , Limite de Detecção , Modelos Lineares , Extração Líquido-Líquido , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
10.
Glia ; 68(11): 2377-2394, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32525239

RESUMO

Microglia-mediated inflammation exerts adverse effects in ischemic stroke and in neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the voltage-gated potassium channel Kv1.3 is required for microglia activation. Both genetic deletion and pharmacological inhibition of Kv1.3 are effective in reducing microglia activation and the associated inflammatory responses, as well as in improving neurological outcomes in animal models of AD and ischemic stroke. Here we sought to elucidate the molecular mechanisms underlying the therapeutic effects of Kv1.3 inhibition, which remain incompletely understood. Using a combination of whole-cell voltage-clamp electrophysiology and quantitative PCR (qPCR), we first characterized a stimulus-dependent differential expression pattern for Kv1.3 and P2X4, a major ATP-gated cationic channel, both in vitro and in vivo. We then demonstrated by whole-cell current-clamp experiments that Kv1.3 channels contribute not only to setting the resting membrane potential but also play an important role in counteracting excessive membrane potential changes evoked by depolarizing current injections. Similarly, the presence of Kv1.3 channels renders microglia more resistant to depolarization produced by ATP-mediated P2X4 receptor activation. Inhibiting Kv1.3 channels with ShK-223 completely nullified the ability of Kv1.3 to normalize membrane potential changes, resulting in excessive depolarization and reduced calcium transients through P2X4 receptors. Our report thus links Kv1.3 function to P2X4 receptor-mediated signaling as one of the underlying mechanisms by which Kv1.3 blockade reduces microglia-mediated inflammation. While we could confirm previously reported differences between males and females in microglial P2X4 expression, microglial Kv1.3 expression exhibited no gender differences in vitro or in vivo. MAIN POINTS: The voltage-gated K+ channel Kv1.3 regulates microglial membrane potential. Inhibition of Kv1.3 depolarizes microglia and reduces calcium entry mediated by P2X4 receptors by dissipating the electrochemical driving force for calcium.


Assuntos
Potenciais da Membrana , Trifosfato de Adenosina , Doença de Alzheimer , Animais , Cálcio , Feminino , Inflamação , Microglia , Receptores Purinérgicos P2 , Receptores Purinérgicos P2X4
11.
J Nutr ; 150(5): 1313-1323, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027752

RESUMO

BACKGROUND: Probiotic Lactobacillius rhamnosus GG (LGG) shows beneficial immunomodulation on cultured cell lines in vitro and in mouse models. OBJECTIVE: The aim was to investigate the effects of LGG on intestinal injury and the underlying mechanisms by elucidating inflammatory signaling pathways and metabolomic response to LPS stimulation in the piglet intestine. METHODS: Piglets (Duroc × Landrace × Large White, including males and female; 8.6 ± 1.1 kg) aged 28 d were assigned to 3 groups (n = 6/group): oral inoculation with PBS for 2 wk before intraperitoneal injection of physiological saline [control (CON)] or LPS (25 µg/kg body weight; LPS) or oral inoculation with LGG for 2 wk before intraperitoneal injection of LPS (LGG+LPS). Piglets were killed 4 h after LPS injection. Systemic inflammation, intestinal integrity, inflammation signals, and metabolomic characteristics in the intestine were determined. RESULTS: Compared with CON, LPS stimulation significantly decreased ileal zonula occludens 1 (ZO-1; 44%), claudin-3 (44%), and occludin (41%) expression; increased serum diamineoxidase (73%), D-xylose (19%), TNF-α (43%), and IL-6 (55%) concentrations; induced p38 mitogen-activated protein kinase (p38 MAPK; 85%), extracellular signal-regulated kinase (ERK; 96%), and NF-κB p65 phosphorylation (37%) (P < 0.05). Compared with LPS stimulation alone, LGG pretreatment significantly enhanced the intestinal barrier by upregulating expressions of tight junction proteins (ZO-1, 73%; claudin-3, 55%; occludin, 67%), thereby decreasing serum diamineoxidase (26%) and D-xylose (28%) concentrations, and also reduced serum TNF-α expression (16%) and ileal p38 MAPK (79%), ERK (43%) and NF-κB p65 (37%) phosphorylation levels (P < 0.05). Metabolomic analysis showed clear separation between each group. The concentrations of caprylic acid [fold-change (FC) = 2.39], 1-mono-olein (FC = 2.68), erythritol (FC = 4.62), and ethanolamine (FC = 4.47) significantly increased in the intestine of LGG + LPS piglets compared with the LPS group (P < 0.05). CONCLUSIONS: These data suggest that LGG alleviates gut inflammation, improves intestinal barrier function, and modulates the metabolite profile of piglets challenged with LPS. This trial was registered at the Zhejiang University (http://www.lac.zju.edu.cn) as ZJU20170529.


Assuntos
Gastroenterite/prevenção & controle , Gastroenteropatias/prevenção & controle , Lacticaseibacillus rhamnosus/fisiologia , Lipopolissacarídeos/farmacologia , Metaboloma/fisiologia , Sus scrofa , Animais , Feminino , Gastroenterite/induzido quimicamente , Gastroenteropatias/induzido quimicamente , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Probióticos/administração & dosagem , Transdução de Sinais/fisiologia , Proteínas de Junções Íntimas/genética , Fator de Transcrição RelA/metabolismo , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J Nutr ; 149(11): 2046-2055, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152671

RESUMO

BACKGROUND: Lactobacillus rhamnosus GG culture supernatant (LGGs) promotes intestinal integrity and ameliorates acute liver injury induced by alcohol in mice. OBJECTIVES: The aim of this study was to investigate the protective effects and molecular mechanisms of Lactobacillus reuteri ZJ617 culture supernatant (ZJ617s) on acute liver injury induced by lipopolysaccharide (LPS) in mice. METHODS: Male C57BL/6 mice (20 ± 2 g, 8 wk old) were randomly divided into 4 groups (6 mice/group): oral inoculation with phosphate-buffered saline (control), intraperitoneal injection of LPS (10 mg/kg body weight) (LPS), oral inoculation with ZJ617s 2 wk before intraperitoneal injection of LPS (ZJ617s + LPS), or oral inoculation with LGGs 2 wk before intraperitoneal injection of LPS (LGGs + LPS). Systemic inflammation, intestinal integrity, biomarkers of hepatic function, autophagy, and apoptosis signals in the liver were determined. RESULTS: Twenty-four hours after LPS injection, the activities of serum alanine transaminase and aspartate transaminase were 32.2% and 30.3% lower in the ZJ617s + LPS group compared with the LPS group, respectively (P < 0.05). The ZJ617s + LPS group exhibited higher intestinal expression of claudin 3 (62.5%), occludin (60.1%), and zonula occludens 1 (60.5%) compared with the LPS group (P < 0.05). The concentrations of hepatic interleukin-6 and tumor necrosis factor-α were 21.4% and 27.3% lower in the ZJ617s + LPS group compared with the LPS group, respectively (P < 0.05). However, the concentration of interleukin-10 was 22.2% higher in the ZJ617s + LPS group. LPS increased the expression of Toll-like receptor 4 (TLR4; by 50.5%), phosphorylation p38 mitogen-activated protein kinase (p38MAPK; by 57.1%), extracellular signal-regulated kinase (by 77.8%), c-Jun N-terminal kinase (by 42.9%), and nuclear factor-κB (NF-κB; by 36.0%) compared with the control group. Supplementation with ZJ617s or LGGs ameliorated these effects (P < 0.05). Moreover, the hepatic expression of active caspase-3 and microtubule-associated protein 1 light chain 3 II was 23.8% and 28.6% lower in the ZJ617s + LPS group compared with the LPS group, respectively (P < 0.05). CONCLUSIONS: ZJ617s exerts beneficial effects on the mouse liver through suppression of hepatic TLR4/MAPK/NF-κB activation, apoptosis, and autophagy. This trial was registered at Zhejiang University (http://www.lac.zju.edu.cn) as NO.ZJU20170529.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Limosilactobacillus reuteri , Probióticos/farmacologia , Animais , Apoptose , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 38(4): 964-975, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472232

RESUMO

OBJECTIVE: The genetic contribution to coronary artery disease (CAD) remains largely unclear. We combined genetic screening with functional characterizations to identify novel loci and candidate genes for CAD. APPROACH AND RESULTS: We performed genome-wide screening followed by multicenter validation in 8 cohorts consisting of 21 828 participants of Han ethnicity and identified 3 novel intragenic SNPs (single nucleotide polymorphisms), rs9486729 (SCML4 [Scm polycomb group protein-like 4]; odds ratio, 1.25; 95% CI, 1.17-1.34; P=3.51×10-11), rs17165136 (THSD7A [thrombospondin type 1 domain-containing 7A]; odds ratio 1.28; 95% CI, 1.21-1.35; P<1.00×10-25), and rs852787 (DAB1 [disabled-1]; odds ratio, 1.29; 95% CI, 1.21-1.38; P=2.02×10-14), associated with CAD with genome-wide significance. The risk allele of rs9486729 and protective allele of rs17165136 were associated with the decreased expression of their host genes, SCML4 and THSD7A, respectively, whereas rs852787 did not have transcriptional effects on any gene. Knockdown of SCML4 activated endothelial cells by increasing the expression of IL-6, E-selectin, and ICAM and weakened their antiapoptotic activity, whereas the knockdown of THSD7A had little effect on these endothelial cell functions but attenuated monocyte adhesion via decreasing the expression of ICAM, L-selectin, and ITGB2. We further showed that inhibiting the expression of SCML4 exacerbated endothelial dysfunction and vascular remodeling in a rat model with partial carotid ligation. CONCLUSIONS: We identify 3 novel loci associated with CAD and show that 2 genes, SCML4 and THSD7A, make functional contributions to atherosclerosis. How rs852787 and its host gene DAB1 are linked to CAD needs further studies.


Assuntos
Doença da Artéria Coronariana/genética , Proteínas do Grupo Polycomb/genética , Polimorfismo de Nucleotídeo Único , Trombospondinas/genética , Adulto , Idoso , Animais , Povo Asiático/genética , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Estenose das Carótidas/genética , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Células Cultivadas , China/epidemiologia , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etnologia , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteínas do Grupo Polycomb/metabolismo , Ratos Sprague-Dawley , Fatores de Risco , Trombospondinas/metabolismo , Remodelação Vascular
14.
J Sci Food Agric ; 99(3): 1384-1396, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30144052

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.), the primary forage crop throughout the world, is sensitive to salt stress during the germination stage. To investigate the response of alfalfa to salt stress, a comprehensive proteomic analysis was performed comparing alfalfa cultivars that differ in salinity tolerance in the early seedling. RESULTS: Five cultivars were examined for salt tolerance, and the most salt-tolerant cultivar, ZhongmuNo.3, and the most salt-sensitive cultivar, Daxiyang, were compared in terms of their physiological and proteomic responses. The two alfalfa cultivars seeds were exposed to 0 mmolL-1 or 200 mmolL-1 NaCl salt treatment for 10 days. Salt stress significantly reduced young seedling growth and the cotyledons' chlorophyll content; meanwhile, it increased the cotyledons' H2 O2 and malondialdehyde (MDA) levels, all of which were less adversely affected in ZhongmuNo.3 than in Daxiyang. A total of 51 spots (24 and 27 protein spots in the salt-sensitive and salt-tolerant cultivars, respectively) were identified as significantly differentially expressed using two-dimensional electrophoresis analysis. The proteins that were associated with salt tolerance included antioxidants/detoxifying enzymes, molecular chaperones, energy metabolic enzymes, a secondary metabolic enzyme, and pathogenesis-related proteins. CONCLUSIONS: Under salt stress, ZhongmuNo.3 possessed a higher capacity for reactive oxygen species (ROS) scavenging, a more abundant energy supply, and stronger photosynthesis than the salt-sensitive cultivar Daxiyang, and these physiological processes may be the primary contributors to salt tolerance in ZhongmuNo.3. These advanced proteome data expand our knowledge of the physiology of the response of alfalfa to salt stress, providing a potentially valuable foundation for molecular breeding to enhance salt tolerance. © 2018 Society of Chemical Industry.


Assuntos
Medicago sativa/metabolismo , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/metabolismo , Clorofila/metabolismo , Germinação , Malondialdeído/metabolismo , Medicago sativa/química , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Plântula/química , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo
15.
Neural Plast ; 2018: 6109723, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534151

RESUMO

Mechanisms underlying remifentanil- (RF-) induced hyperalgesia, a phenomenon that is generally named as opioid-induced hyperalgesia (OIH), still remain elusive. The ventral posterior lateral nucleus (VPL) of the thalamus, a key relay station for the transmission of nociceptive information to the cerebral cortex, is activated by RF infusion. Electroacupuncture (EA) is an effective method for the treatment of pain. This study aimed to explore the role of VPL in the development of OIH and the effect of EA treatment on OIH in rats. RF was administered to rats via the tail vein for OIH induction. Paw withdrawal threshold (PWT) in response to mechanical stimuli and paw withdrawal latency (PWL) to thermal stimulation were tested in rats for the assessment of mechanical allodynia and thermal hyperalgesia, respectively. Spontaneous neuronal activity and local field potential (LFP) in VPL were recorded in freely moving rats using the in vivo multichannel recording technique. EA at 2 Hz frequency (pulse width 0.6 ms, 1-3 mA) was applied to the bilateral acupoints "Zusanli" (ST.36) and "Sanyinjiao" (SP.6) in rats. The results showed that both the PWT and PWL were significantly decreased after RF infusion to rats. Meanwhile, both the spontaneous neuronal firing rate and the theta band oscillation in VPL LFP were increased on day 3 post-RF infusion, indicating that the VPL may promote the development of RF-induced hyperalgesia by regulating the pain-related cortical activity. Moreover, 2 Hz-EA reversed the RF-induced decrease both in PWT and PWL of rats and also abrogated the RF-induced augmentation of the spontaneous neuronal activity and the power spectral density (PSD) of the theta band oscillation in VPL LFP. These results suggested that 2 Hz-EA attenuates the remifentanil-induced hyperalgesia via reducing the excitability of VPL neurons and the low-frequency (theta band) oscillation in VPL LFP.


Assuntos
Eletroacupuntura/métodos , Hiperalgesia/induzido quimicamente , Hiperalgesia/terapia , Núcleos Laterais do Tálamo/fisiologia , Remifentanil/toxicidade , Núcleos Ventrais do Tálamo/fisiologia , Analgésicos Opioides/toxicidade , Animais , Hiperalgesia/fisiopatologia , Núcleos Laterais do Tálamo/efeitos dos fármacos , Masculino , Dor/induzido quimicamente , Dor/fisiopatologia , Manejo da Dor/métodos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Núcleos Ventrais do Tálamo/efeitos dos fármacos
16.
J Sci Food Agric ; 98(9): 3315-3323, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29239490

RESUMO

BACKGROUND: Heat stress (HS) has an adverse effect on meat quality; however, the underlying molecular mechanisms altering meat quality due to muscle responses to stress remain unclear. Sixteen castrated male crossbreeds between Landrace × Yorkshire sows and Duroc boars (79.00 ± 1.50 kg body weight) were exposed to either thermal neutral (22 °C, n = 8) or HS (30 °C, n = 8) conditions for 3 weeks. Subsequently, the longissimus dorsi (LD) muscle of all pigs was assayed for meat quality parameters and proteome analysis. RESULTS: HS decreased post mortem (24 h) pH and intramuscular fat, changed ultimate L*, a* and b* values and increased drip loss and shear force. Proteome analysis of the LD was conducted by two-dimensional gel electrophoresis and mass spectrometry. A total of 23 differentially expressed proteins were identified, of which three were verified by western blotting analysis. The identified proteins were involved in six types of biological process: carbohydrate metabolism, myofibrillar and cytoskeleton structure, stress response, antioxidant and detoxification, calcium binding and cellular apoptosis. Interestingly, HS induced higher levels of heat shock protein, antioxidants and calcium binding proteins, which are involved in the mechanisms of defense and homeostasis. CONCLUSION: The results indicate that HS-induced changes in the expression of myofibrillar proteins, glucose and energy metabolism-related proteins, heat shock protein and antioxidant enzymes might, at least partly, contribute to increase in meat tenderness. These findings will provide the foundation for developing future mitigating solutions and preventative therapies to reduce the detrimental effects of chronic HS on muscle function, metabolism and meat quality. © 2017 Society of Chemical Industry.


Assuntos
Temperatura Alta/efeitos adversos , Carne , Proteínas Musculares/análise , Músculo Esquelético/química , Proteômica , Sus scrofa , Tecido Adiposo , Animais , Antioxidantes/análise , Composição Corporal , Metabolismo Energético , Qualidade dos Alimentos , Glucose/metabolismo , Proteínas de Choque Térmico/análise , Concentração de Íons de Hidrogênio , Masculino , Miofibrilas/química , Orquiectomia , Proteômica/métodos
17.
Neurochem Res ; 42(10): 2712-2729, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28497343

RESUMO

Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) contributes to spinal long-term potentiation (LTP) and pain hypersensitivity through activation of GluN2B-containing N-methyl-D-aspartate (GluN2B-NMDA) receptors in rats following spinal nerve ligation (SNL). However, the molecular mechanisms by which BDNF impacts upon GluN2B-NMDA receptors and spinal LTP still remain unclear. In this study, we first documented that Fyn kinase-mediated phosphorylation of GluN2B subunit at tyrosine 1472 (pGluN2BY1472) was involved in BDNF-induced spinal LTP and pain hypersensitivity in intact rats. Second, we revealed a co-localization of Fyn and GluN2B-NMDA receptor in cultured dorsal horn neurons, implying that Fyn is a possible intermediate kinase linking BDNF/TrkB signaling with GluN2B-NMDA receptors in the spinal dorsal horn. Furthermore, we discovered that both SNL surgery and intrathecal active Fyn could induce an increased expression of dorsal horn pGluN2BY1472, as well as pain hypersensitivity in response to von Frey filaments stimuli; and more importantly, all these actions were effectively abrogated by pre-treatment with either PP2 or ifenprodil to respectively inhibit Fyn kinase and GluN2B-NMDA receptors activity. Moreover, we found that intrathecal administration of BDNF scavenger TrkB-Fc prior to SNL surgery, could prevent the nerve injury-induced increase of both pFynY420 and pGluN2BY1472 expression, and also inhibit the mechanical allodynia in neuropathic rats. Collectively, these results suggest that Fyn kinase-mediated pGluN2BY1472 is critical for BDNF-induced spinal LTP and pain hypersensitivity in SNL rats. Therefore, the BDNF-Fyn-GluN2B signaling cascade in the spinal dorsal horn may constitute a key mechanism underlying central sensitization and neuropathic pain development after peripheral nerve injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Hiperalgesia/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Fosforilação , Ratos Sprague-Dawley , Nervos Espinhais/metabolismo , Tirosina/metabolismo
18.
Mol Genet Genomics ; 291(6): 2101-2115, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27561287

RESUMO

Exposure to high ambient temperatures is detrimental to pig rearing and porcine meat quality. Deep molecular sequencing allows for genomic characterization of porcine skeletal muscles and helps understand how the genomic landscape may impact meat quality. To this end, we performed mRNA-seq to molecularly dissect the impact of heat stress on porcine skeletal muscles, longissimus dorsi. Sixteen castrated, male DLY pigs [which are crossbreeds between Duroc (D) boars and Landrace (L) × Yorkshire (Y) sows, 79.0 ± 1.5 kg BW] were evenly split into two groups that were subjected to either control (CON) (22 °C; 55 % humidity) or constant heat stress (H30; 30 °C; 55 % humidity) conditions for 21 days. Seventy-eight genes were found to be differentially expressed, of which 37 were up-regulated and 41 were down-regulated owing to constant heat stress. We predicted 5247 unknown genes and 6108 novel transcribed units attributed to alternative splicing (AS) events in the skeletal muscle. Furthermore, 30,761 and 31,360 AS events were observed in the CON and H30 RNA-seq libraries, respectively. The differentially expressed genes in the porcine skeletal muscles were involved in glycolysis, lactate metabolism, lipid metabolism, cellular defense, and stress responses. Additionally, the expression levels of these genes were associated with variations in meat quality between the CON and H30 groups, indicating that heat stress modulated genes crucial to skeletal muscle development and metabolism. Our transcriptomic analysis provides valuable information for understanding the molecular mechanisms governing porcine skeletal muscle development. Such insights may lead to innovative strategies to improve meat quality of pigs under heat stress.


Assuntos
Perfilação da Expressão Gênica/métodos , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Processamento Alternativo , Animais , Linhagem Celular , Cruzamentos Genéticos , Regulação da Expressão Gênica , Temperatura Alta , Masculino , Carne/normas , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Suínos
19.
Int J Mol Sci ; 17(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187351

RESUMO

Heat stress (HS) negatively affects human health, animal welfare, and livestock production. We analyzed the hepatic proteomes of finishing pigs subjected to chronic heat stress (HS), thermal neutral (TN), and restricted feed intake conditions, identifying differences between direct and indirect (via reduced feed intake) HS. Twenty-four castrated male pigs were randomly allocated to three treatments for three weeks: (1) thermal neutral (TN) (22 °C) with ad libitum feeding; (2) chronic HS (30 °C) with ad libitum feeding; and (3) TN, pair-fed to HS intake (PF). Hepatic proteome analysis was conducted using two-dimensional gel electrophoresis and mass spectrometry. Both HS and PF significantly reduced liver weight (p < 0.05). Forty-five hepatic proteins were differentially abundant when comparing HS with TN (37), PF with TN (29), and HS with PF (16). These proteins are involved in heat shock response and immune defense, oxidative stress response, cellular apoptosis, metabolism, signal transduction, and cytoskeleton. We also observed increased abundance of proteins and enzymes associated with heat shock response and immune defense, reduced the redox state, enhanced multiple antioxidant abilities, and increased apoptosis in HS liver. Heat-load, independent of reduced feed intake, induced an innate immune response, while food restriction caused stress and cellular apoptosis. Our results provide novel insights into the effects of chronic HS on liver.


Assuntos
Apoptose , Resposta ao Choque Térmico , Fígado/metabolismo , Estresse Oxidativo , Proteoma/metabolismo , Animais , Fígado/imunologia , Masculino , Proteoma/genética , Suínos
20.
Mol Pharmacol ; 87(4): 595-605, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583085

RESUMO

Primary cultured hippocampal neurons (HN) form functional networks displaying synchronous Ca(2+) oscillations (SCOs) whose patterns influence plasticity. Whether chemicals with distinct seizurogenic mechanisms differentially alter SCO patterns was investigated using mouse HN loaded with the Ca(2+) indicator fluo-4-AM. Intracellular Ca(2+) dynamics were recorded from 96 wells simultaneously in real-time using fluorescent imaging plate reader. Although quiescent at 4 days in vitro (DIV), HN acquired distinctive SCO patterns as they matured to form extensive dendritic networks by 16 DIV. Challenge with kainate, a kainate receptor (KAR) agonist, 4-aminopyridine (4-AP), a K(+) channel blocker, or pilocarpine, a muscarinic acetylcholine receptor agonist, caused distinct changes in SCO dynamics. Kainate at <1 µM produced a rapid rise in baseline Ca(2+) (Phase I response) associated with high-frequency and low-amplitude SCOs (Phase II response), whereas SCOs were completely repressed with >1 µM kainate. KAR competitive antagonist CNQX [6-cyano-7-nitroquinoxaline-2,3-dione] (1-10 µM) normalized Ca(2+) dynamics to the prekainate pattern. Pilocarpine lacked Phase I activity but caused a sevenfold prolongation of Phase II SCOs without altering either their frequency or amplitude, an effect normalized by atropine (0.3-1 µM). 4-AP (1-30 µM) elicited a delayed Phase I response associated with persistent high-frequency, low-amplitude SCOs, and these disturbances were mitigated by pretreatment with the KCa activator SKA-31 [naphtho[1,2-d]thiazol-2-ylamine]. Consistent with its antiepileptic and neuroprotective activities, nonselective voltage-gated Na(+) and Ca(2+) channel blocker lamotrigine partially resolved kainate- and pilocarpine-induced Ca(2+) dysregulation. This rapid throughput approach can discriminate among distinct seizurogenic mechanisms that alter Ca(2+) dynamics in neuronal networks and may be useful in screening antiepileptic drug candidates.


Assuntos
Anticonvulsivantes/farmacologia , Cálcio/metabolismo , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Convulsões/metabolismo , 4-Aminopiridina/farmacologia , Animais , Anticonvulsivantes/química , Células Cultivadas , Ensaios de Triagem em Larga Escala , Hipocampo/citologia , Ácido Caínico/farmacologia , Lamotrigina , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/farmacologia , Rede Nervosa , Neurônios/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Receptores de Ácido Caínico/agonistas , Triazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA