Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Can J Infect Dis Med Microbiol ; 2024: 7502110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660494

RESUMO

Introduction: The development of combinatorial adjuvants is a promising strategy to boost vaccination efficiency. Accumulating evidence indicates that manganese exerts strong immunocompetence and will become an enormous potential adjuvant. Here, we described a novel combination of Mn2+ plus aluminum hydroxide (AH) adjuvant that significantly exhibited the synergistic immune effect. Methodology. Initially, IsdB3 proteins as the immune-dominant fragment of IsdB proteins derived from Staphylococcus aureus (S. aureus) were prepared. IsdB3 proteins were identified by western blotting. Furthermore, we immunized C57/B6 mice with IsdB3 proteins plus Mn2+ and AH adjuvant. After the second immunization, the proliferation of lymphocytes was measured by the cell counting kit-8 (CCK-8) and the level of IFN-γ, IL-4, IL-10, and IL-17 cytokine from spleen lymphocytes in mice and generation of the antibodies against IsdB3 in serum was detected with ELISA, and the protective immune response was assessed through S. aureus challenge. Results: IsdB3 proteins plus Mn2+ and AH obviously stimulated the proliferation of spleen lymphocytes and increased the secretion of IFN-γ, IL-4, IL-10, and IL-17 cytokine in mice, markedly enhanced the generation of the antibodies against IsdB3 in serum, observably decreased bacterial load in organs, and greatly improved the survival rate of mice. Conclusion: These data showed that the combination of Mn2+ and AH significantly acted a synergistic effect, reinforced the immunogenicity of IsdB3, and offered a new strategy to increase vaccine efficiency.

2.
Phys Rev Lett ; 130(15): 153801, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115872

RESUMO

Bound states of solitons ("molecules") occur in various settings, playing an important role in the operation of fiber lasers, optical emulation, encoding, and communications. Soliton interactions are generally related to breathing dynamics in nonlinear dissipative systems, and maintain potential applications in spectroscopy. In the present work, dichromatic breather molecules (DBMs) are created in a synchronized mode-locked fiber laser. Real-time delay-shifting interference spectra are measured to display the temporal evolution of the DBMs, that cannot be observed by means of the usual real-time spectroscopy. As a result, robust out-of-phase vibrations are found as a typical intrinsic mode of DBMs. The same bound states are produced numerically in the framework of a model combining equations for the population inversion in the mode-locked laser and cross-phase-modulation-coupled complex Ginzburg-Landau equations for amplitudes of the optical fields in the fiber segments of the laser cavity. The results demonstrate that the Q-switching instability induces the onset of breathing oscillations. The findings offer new possibilities for the design of various regimes of the operation of ultrafast lasers.

3.
Microb Pathog ; 144: 104167, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32222538

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase-C (GapC) is a highly conserved surface protein of Staphylococcus aureus, with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, which represents an excellent vaccine candidate antigen. It can induce protective immune responses to S. aureus infections. However, CD4+ T cell epitopes of GapC that induce CD4+ T cell immune responses are currently unclear. In this study, we used bioinformatics prediction algorithms to predict CD4+ T cell epitopes of GapC. Ten peptides were synthesized to investigate the candidate epitopes. Our results showed that the peptides, G4 (GapC 104-123) and G10 (GapC 314-333) were able to induce proliferation of CD4+ T cells and secrete high levels of interferon (IFN)-γ, respectively. In addition, they significantly reduced bacterial loads in tissue and induced immunoprotective effects. It is suggested that G4 and G10 are Th1-type epitopes of S. aureus GapC. This study provides the potential development of the design of epitope-based vaccine against S. aureus.


Assuntos
Anticorpos Antibacterianos/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Staphylococcus aureus/imunologia , Algoritmos , Animais , Carga Bacteriana/imunologia , Vacinas Bacterianas/imunologia , Proliferação de Células/fisiologia , Biologia Computacional , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Opt Lett ; 45(17): 4678-4681, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870830

RESUMO

Optoacoustic interaction can be strongly enhanced in tiny core fibers, and it holds significant potential for stable harmonic mode-locking at gigahertz (GHz) and higher repetition rate. In this Letter, we propose and demonstrate a microfiber-assisted GHz harmonic mode-locking fiber laser, which is achieved by the enhanced optomechanical coupling between cavity modes in microfiber with the waist length of ∼16cm and the waist diameter of ∼1.56µm. The repetition rates can be stably locked at 2.3828 GHz and predominately locked at 1.7852 GHz, corresponding to the frequencies of radial R01 and torsional-radial TR21 acoustic modes, respectively. Our results provide novel insight into the design of a high-repetition-rate laser source and the application of microfibers in the optomechanical field.

5.
Opt Lett ; 45(17): 4835-4838, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870870

RESUMO

Real-time measurement of ultrafast pulses together with high temporal resolution and long recording length is an urgent requirement of all optical communication systems and nonlinear science. Here, external motion dynamics of soliton pairs in mode-locking ultrafast fiber lasers can be single-shot characterized with long recording length, by using an asynchronous four-wave-mixing (FWM)-based temporal magnifier (AFTM) system. Recording length of more than one thousand roundtrips can be achieved through the AFTM system. Temporal propagation dynamics of soliton pairs with tunable separations are observed, revealing that soliton pairs with narrower separation display vibration-like dynamics, while the two solitons with wider separation remain relatively unchanged. We believe our results will provide a promising solution for real-time measurement of ultrafast pulse and can offer novel insights for ultrafast transient dynamics in nonlinear optics.

6.
Opt Lett ; 45(22): 6246-6249, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186961

RESUMO

Creeping solitons, which belong to the class of pulsating solitons, can be meaningful for fundamental physics owing to their fruitful nonlinear dynamics. Their characteristics in mode-locked lasers have been studied theoretically, but it is difficult to experimentally observe evolution dynamics in real time. Here, we have experimentally observed the temporal and spectral evolution dynamics of creeping solitons in a passively mode-locked fiber laser by employing time-lens and dispersive Fourier transform technique. With the aid of Raman amplification, the measured recording length of the time lens in the asynchronous mode could be substantially improved. Temporal soliton snaking motion and spectral breathing dynamics are experimentally obtained, confirming intrinsic feature of pulsation dynamics. These results display how single-shot measurements can offer new insights into ultrafast transient dynamics in nonlinear optics.

7.
Biosci Biotechnol Biochem ; 84(9): 1846-1855, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32501144

RESUMO

Here, we prepared the novel combined adjuvants, CTB as intra-molecular adjuvant, CpG and aluminum hydroxide (Alum) to strengthen the immunogenicity of clumping factor A221-550 of Staphylococcus aureus (S. aureus). The protein-immunoactive results showed CTB-ClfA221-550 elicited the strong immune responses to serum from mice immunized with CTB and ClfA221-550, respectively. The mice immunized with CTB-ClfA221-550 plus CpG and Alum adjuvant exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4, and IL-17 and displayed the higher proliferation response of splenic lymphocytes than the control groups, in addition, these mice generated the strongest humoral immune response against ClfA221-550 among all groups. Our results also showed CTB-ClfA221-550 plus CpG and Alum adjuvant obviously increased the survival percentage of the mice challenged by S. aureus. These data suggested that the novel combined adjuvants, CTB, CpG, and Alum, significantly enhance the immune responses triggered with ClfA221-550, and could provide a new approach against infection of S. aureus. ABBREVIATIONS: CTB: Cholera Toxin B; CpG: Cytosine preceding Guanosine; ODN: Oligodeoxynucleotides; Alum: Aluminum hydroxide; TRAP: Target of RNAIII-activating Protein; TLR9: Toll-like Receptor 9; TMB: 3, 3', 5, 5'-tetramethylbenzidine; mAbs: Monoclonal Antibodies; OD: Optical Densities; S. aureus: Staphylococcus aureus; ClfA: Clumping factor A; FnBPA: Fibronection-binding protein A; IsdB: Iron-regulated surface determinant B; SasA: Staphylococcus aureus Surface Protein A; GapC: Glycer-aldehyde-3-phosphate dehydrogenase-C.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Toxina da Cólera/farmacologia , Coagulase/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Imunização , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Camundongos , Oligodesoxirribonucleotídeos/farmacologia
8.
Microb Pathog ; 136: 103676, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31437577

RESUMO

The purpose of this investigation was to construct a recombinant Escherichia coli strain displaying the Staphylococcus aureus target of RNAIII activating protein (TRAP) on its surface, and to investigate the strain for its immunogenicity. The lpp'ompA and lpp'ompA-TRAP genes were fused by the overlap polymerase chain reaction and then ligated into expression plasmid pQE30 producing pLO and pLO-TRAP. These two recombinant plasmids were transformed into E. coli XL1-Blue, resulting in XL1-Blue/pLO and XL1-Blue/pLO-TRAP, which were induced to express protein. The expressed TRAP protein was displayed on the surface of XL1-Blue as judged by whole cell ELISA, flow cytometric analysis, and laser scanning confocal microscopy using the lpp'ompA surface display system. ICR mice were intramuscularly immunized with recombinant strains XL1-Blue/pLO and XL1-Blue/pLO-TRAP as well as recombinant protein TRAP. Immunized mice were assessed for anti-TRAP antibody and lymphocytes for secreted IL-4 and IFN-γ by ELISPOT and secreted IL-17A by indirect ELISA. Immunized mice were challenged with S. aureus Newman and HLJ23-1 strains. The results showed both XL1-Blue/pLO-TRAP and TRAP protein immunized mice to produce better cellular and humoral immunity than XL1-Blue/pLO and PBS injected mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Técnicas de Visualização da Superfície Celular , Proteínas de Membrana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos , ELISPOT , Escherichia coli/genética , Escherichia coli/metabolismo , Injeções Intramusculares , Linfócitos/imunologia , Proteínas de Membrana/genética , Camundongos Endogâmicos ICR , Proteínas Recombinantes de Fusão/genética , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética
9.
Microb Pathog ; 118: 39-47, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29522802

RESUMO

The GapC protein of Staphylococcus aureus (S. aureus) is a surface protein that is highly conserved among Staphylococcus strains, and it can induce protective humoral immune responses. However, B-cell epitopes in S. aureus GapC have not been reported. In this study, we generated a monoclonal antibody (mAb2A9) targeting S. aureus GapC. Through a passive immunity test, mAb2A9 was shown to partially protect mice against S. aureus infection. We screened the motif 236PVATGSLTE243 that is recognized by mAb2A9 using a phage-display system. The motif sequence exactly matched amino acids 236-243 of the S. aureus GapC protein. Then, we identified the key amino acids in the motif using site-directed mutagenesis. Site-directed mutagenesis revealed that residues P236, G240, L242, and T243 formed the core of the 236PVATGSLT243 motif. In addition, this epitope was proven to be located on the surface of S. aureus, and it induced a protective humoral immune response against S. aureus infection in immunized mice. Overall, our results characterized a conserved B-cell epitope, which will be an attractive target for designing effective epitope-based vaccines against S. aureus infection.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas , Bacteriófagos , Técnicas de Visualização da Superfície Celular , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Feminino , Imunidade , Imunização Passiva , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fagocitose , Conformação Proteica , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/genética
10.
Phys Rev Lett ; 121(2): 023905, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085749

RESUMO

Real-time spectroscopy access to ultrafast fiber lasers opens new opportunities for exploring complex soliton interaction dynamics. Here, we have reported the first observation, to the best of our knowledge, of the entire buildup process of soliton molecules (SMs) in a mode-locked laser. We have observed that the birth dynamics of a stable SM experiences five different stages, i.e., the raised relaxation oscillation (RO) stage, beating dynamics stage, transient single pulse stage, transient bound state, and finally the stable bound state. We have discovered that the evolution of pulses in the raised RO stage follows a law that only the strongest one can ultimately survive and, meanwhile, the pulses periodically appear at the same temporal positions for all lasing spikes during the same RO stage (named as memory ability) but they lose such ability between different RO stages. Moreover, we have found that the buildup dynamics of SMs is quite sensitive to both the polarization state of intracavity light and the fluctuation of pump power. These results provide new perspectives into the ultrafast transient process in mode-locked lasers and the dynamics of complex nonlinear systems.

11.
Cytogenet Genome Res ; 153(1): 36-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29169149

RESUMO

Interferon-γ (IFN-γ), a cytokine produced by activated natural killer cells and T lymphocytes, is an important regulator of innate and adaptive immunity. Interleukin (IL)-18, also known as IFN-γ-inducing factor, is a cytokine that induces T and natural killer cells to produce IFN-γ. In this study, the chicken IL-18 (ChIL-18) and chicken IFN-γ (ChIFN-γ) genes were inserted into the pET28a prokaryotic expression vector, resulting in pET28a-IL-18 and pET28a-IFN-γ, respectively. These plasmids were transformed into Escherichia coli strain BL21, and the ChIL-18 and ChIFN-γ proteins were expressed and purified. To determine their antiviral activities, 200 ng/mL of ChIL-18 and/or ChIFN-γ were inoculated into chicken embryonic fibroblast cells. After 24 h, one 50% tissue culture infective dose (TCID50) of infectious bursal disease virus (IBDV) was inoculated into the chicken embryonic fibroblast cells. The results showed that the antiviral effect of ChIL-18 and ChIFN-γ in combination was better than that of ChIL-18 or ChIFN-γ alone. Next, 14-day-old chicken were injected with 200 µg of ChIL-18 and/or ChIFN-γ and then were challenged with 103 TCID50 of IBDV via intraperitoneal injection. The results showed that the proliferation of IBDV was inhibited by the injection of the recombinant proteins, especially the combination of ChIL-18 and ChIFN-γ, as evidenced by cytokine detection, quantitative PCR, and pathology analyses. These results indicate that ChIL-18 and ChIFN-γ could inhibit IBDV infection and the combination of ChIL-18 and ChIFN-γ has a better inhibitory effect than either cytokine alone.


Assuntos
Infecções por Birnaviridae/prevenção & controle , Vírus da Doença Infecciosa da Bursa/imunologia , Interferon gama/genética , Interleucina-18/genética , Replicação Viral/imunologia , Animais , Antivirais/metabolismo , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Embrião de Galinha , Galinhas , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-18/biossíntese , Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Plasmídeos/genética , Replicação Viral/genética
12.
Microb Pathog ; 105: 288-297, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28179116

RESUMO

Streptococcus is one of the main pathogens that cause bovine mastitis. They includes into S.agalactiae, S.dysgalactiae, and S.uberis. The GapC protein is a virulence factor that is expressed on the surface of Streptococcus species. GapC is highly antigenic and immunization with GapC confers cross-protection against all three species. Our previous data showed that amino acids 1-150 of GapC (GapC1-150) of S. dysgalactiae conferred similar immunoprotection compared to full-length GapC. Thus, the present study aimed to construct a recombinant Escherichia coli XL1-Blue strain that displayed GapC1-150 on its surface, and to investigate the immunogenicity of the surface-localized GapC1-150. To do so, the ompA gene of the E. coli XL1-Blue strain was replaced with the lpp'-ompA-gapC11-150 or lpp'-ompA genes by λ Red recombination, the former of which fused GapC1-150 to an Lpp lipoprotein signal peptide and amino acids 1-159 of OmpA; the recombinant strains were named XL1-Blue/LOG76 and XL1-Blue/LO11, respectively. GapC1-150 was confirmed to localize to the surface of the XL1-Blue/LOG76 strain by an indirect enzyme-linked immunosorbent assay (ELISA), a fluorescence-activated cell sorter analysis, and laser-scanning confocal microscopy. Then, ICR mice were immunized intramuscularly with the XL1-Blue/LOG76 or XL1-Blue/LO11 strains, or recombinant GapC1-150. The sera of the immunized mice were collected and the anti-GapC1-150 antibody levels were detected by ELISA. Lymphocytes secreting interleukin (IL)-4 and interferon-γ were detected by an enzyme-linked ImmunoSpot assay, as was the level of IL-17A level in the supernatant of cultured splenic lymphocytes. The mice immunized with the XL1-Blue/LOG76 strain or GapC1-150 exhibited better cellular and humoral immunity. Lastly, the immunized mice were challenged with S. uberis, S. dysgalactiae, and S. agalactiae strains, and mice that were immunized with the XL1-Blue/LOG76 strain were better protected than those that were immunized with the XL1-Blue/LO11 strain. These results indicate that it is feasible to display GapC1-150 on the E. coli surface as a vaccine against Streptococcus species.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Bovinos , Citocinas/imunologia , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Interferon gama/sangue , Interleucina-17/sangue , Interleucina-4/sangue , Mastite Bovina/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas Estreptocócicas/genética , Streptococcus/genética , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
13.
Microb Pathog ; 112: 30-37, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28942173

RESUMO

Manganese transport protein C (MntC) of Staphylococcus aureus represents an excellent vaccine-candidate antigen. The important role of CD4+ T cells in effective immunity against S. aureus infection was shown; however, CD4+ T cell-specific epitopes on S. aureus MntC have not been well identified. Here, we used bioinformatics prediction algorithms to evaluate and identify nine candidate epitopes within MntC. Our results showed that peptide M8 emulsified in Freund's adjuvant induced a much higher cell-proliferation rate as compared with controls. Additionally, CD4+ T cells stimulated with peptide M8 secreted significantly higher levels of interferon-γ and interleukin-17A. These results suggested that peptide M8 represented an H-2d (I-E)-restricted Th17-specific epitope.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/isolamento & purificação , Manganês/metabolismo , Proteína C/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Mapeamento de Epitopos , Escherichia coli/genética , Feminino , Interferon gama/metabolismo , Interleucina-17/metabolismo , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos BALB C , Proteína C/genética , Proteína C/imunologia , Estrutura Secundária de Proteína , Proteínas Recombinantes/imunologia , Infecções Estafilocócicas/imunologia , Células Th1/imunologia , Células Th17/imunologia
14.
Arch Virol ; 162(10): 3143-3149, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28631053

RESUMO

Contagious ecthyma, caused by orf virus (ORFV), is an epitheliotrophic contagious disease with zoonotic implications that mainly affects sheep, goats, wild ruminants, and humans. Recently, a novel ORFV strain, OV/HLJ/04, was successfully isolated from the skin and mucosal lesions of a goat with severe clinical sore mouth symptoms in Heilongjiang province of China. The OV/HLJ/04 isolate was characterized by electron microscopy, serological tests, and experimental reproduction of disease. The purified virions exhibited a typical ovoid shape when observed by electron microscopy. Moreover, experimental reproduction of disease showed that a lamb developed typical clinical signs of contagious ecthyma, such as severe vascular proliferation, when inoculated with the virus. Subsequently, amplification of ORFV011 (B2L) gene fragments of viral DNA by polymerase chain reaction (PCR) and gene sequencing were performed. Phylogenetic analysis of the B2L protein gene revealed that this strain clusters with ORFV strains from epidemic-stricken areas worldwide, including recent mainland China isolates. Analysis using ClustalW MegAlign in DNAStar indicated that OV/HLJ/04 (GenBank: KU523790.1) was genetically closely related to the isolates Gansu (JQ904789), with 99.7% identity; NZ2 (DQ184476), with 97.4% identity; and Xinjiang (KF666560), with 90.6% identity. These results may provide insights into the genotype of the etiological agent responsible for the orf outbreak in Heilongjiang Province.


Assuntos
Surtos de Doenças/veterinária , Ectima Contagioso/virologia , Doenças das Cabras/virologia , Vírus do Orf/genética , Animais , China/epidemiologia , DNA Viral/genética , Ectima Contagioso/epidemiologia , Técnica Indireta de Fluorescência para Anticorpo , Doenças das Cabras/epidemiologia , Cabras , Masculino , Filogenia , Reação em Cadeia da Polimerase , Ovinos
15.
Virus Genes ; 53(1): 71-76, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27815750

RESUMO

In this study, a novel duplex nanoparticle-assisted polymerase chain reaction (nanoPCR) assay was developed to detect porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV). Two pairs of primers were designed based on the conserved region within the N gene of PEDV and TGEV. In a screening of 114 clinical samples from four provinces in China for PEDV and TGEV, 48.2 and 3.5 % of the samples, respectively, tested positive. Under optimized conditions, the duplex nanoPCR assay had a detection limit of 7.6 × 101 and 8.5 × 101 copies µL-1 for PEDV and TGEV, respectively. The sensitivity of the duplex nanoPCR assay was ten times higher than that of a conventional PCR assay. Moreover, no fragments were amplified when the duplex nanoPCR assay was used to test samples containing other porcine viruses. Our results indicate that the duplex nanoPCR assay described here is useful for the rapid detection of PEDV and TGEV and can be applied in clinical diagnosis.


Assuntos
Nanopartículas , Reação em Cadeia da Polimerase , Vírus da Diarreia Epidêmica Suína/genética , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Vírus da Gastroenterite Transmissível/genética , Animais , Reação em Cadeia da Polimerase/métodos , Vírus da Diarreia Epidêmica Suína/classificação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Vírus da Gastroenterite Transmissível/classificação , Vírus da Gastroenterite Transmissível/isolamento & purificação
16.
Microb Pathog ; 96: 58-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27057671

RESUMO

Our previous study found that the nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), is translocated to the cytoplasm and forms punctate pattern during enterovirus 71 (EV71) infection [Virus Research, 180 (2014), 1-11]. However, the exact function of this punctate pattern in cytoplasm during EV71 infection remains unknown. In this study, we firstly have examined this punctate pattern of Sam68 re-localization in the cytoplasm, and observed the obvious recruitments of Sam68 to the EV71-induced stress granules (SGs). Sam68, belongs to the KH domain family of RNA binding proteins (RBPs), was then confirmed that its KH domain was essential for this recruitment. Nevertheless, Knockdown of Sam68 expression using ShRNA had no effects on SGs assembly, indicating that Sam68 is not a constitutive component of the SGs during EV71 infection. Lastly, we investigated the importance of microtubulin transport to SGs aggregation, and revealed that microtubule depolymerization inhibited SGs formation, suggesting that EV71-induced SGs move throughout the cytoplasm in a microtubule-dependent manner. Taken together, these results illuminated that EV71 infections can induce SGs formation, and Sam68, as a SGs component, migrates alone with SGs dependent on intact microtubule upon the viral infections. These findings may provide novel underlying mechanism for delineating the role of SGs during EV71 infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/análise , Grânulos Citoplasmáticos/química , Proteínas de Ligação a DNA/análise , Enterovirus Humano A/crescimento & desenvolvimento , Proteínas de Ligação a RNA/análise , Células HeLa , Humanos , Transporte Proteico
17.
Microb Pathog ; 91: 46-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657721

RESUMO

The GapC protein is highly conserved surface dehydrogenase among Streptococcus dysgalactiae (S. dysgalactiae) and is shown to be involved in bacterial virulence. Immunization of GapC protein can induce specific CD4(+) T-cell immune responses and protect against S. dysgalactiae infection. However, there are no studies to identify immunodominant CD4(+) T-cell epitopes on GapC protein. In this study, in silico MHC affinity measurement method was firstly used to predict potential CD4(+) T-cell epitopes on GapC protein. Six predictive 15-mer peptides were synthesized and two novel GapC CD4(+) T-cell epitopes, GapC63-77 and GapC96-110, were for the first time identified using CD4(+) T-cells obtained from GapC-immunized BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice spleen based on cell proliferation and cytokines response. The results showed that peptides containing 63-77 and 96-110 induced significant antigen-specific CD4(+) T-cells proliferation response in vivo. At the same time, high levels of IFN-γ and IL-17A, as well as moderate levels of IL-10 and IL-4 were detected in CD4(+) T-cells isolated from both GapC and peptide-immunized mice in vivo, suggesting that GapC63-77 and GapC96-110 preferentially elicited polarized Th1/Th17-type responses. The characterization of GapC CD4(+) T-cell epitopes not only helps us understand its protective immunity, but also contributes to design effective T-cell epitope-based vaccine against S. dysgalactiae infection.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Mapeamento de Epitopos , Epitopos de Linfócito T/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus/genética
18.
Microb Pathog ; 100: 84-89, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27633794

RESUMO

Enterovirus 71 (EV71) is a human pathogen that induces hand, foot, and mouth disease (HFMD) and fatal neurological diseases in young children and infants. Pathogenicity of EV71 is likely related to its ability to evade host innate immunity through inhibiting cellular type I interferon signaling. However, it is less well understood the molecular events governing this process. In this study, we found that EV71 infection suppressed the induction of antiviral immunity by inhibiting the expression levels of IFN-ß and IFN-stimulated genes (ISGs), such as ISG54 and ISG56, at the late stage of viral infection. At the same time, our results showed that EV71 infection significantly inhibited ubiquitination of RIG-I. In contrast, up-regulation of RIG-I ubiquitination promoted expression of IFN-ß and ISGs, suggesting that inhibition of cellular type I interferon signaling was caused by down-regulation of RIG-I ubiquitination during EV71 infection. These results suggest that inhibition of RIG-I-mediated type I IFN responses by EV71 may contribute to the pathogenesis of viral infection.


Assuntos
Proteína DEAD-box 58/antagonistas & inibidores , Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Transdução de Sinais , Ubiquitinação , Linhagem Celular Tumoral , Proteína DEAD-box 58/metabolismo , Enterovirus Humano A/patogenicidade , Humanos , Processamento de Proteína Pós-Traducional , Receptores Imunológicos
19.
Arch Virol ; 161(9): 2543-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27287433

RESUMO

Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.


Assuntos
Infecções por Coronavirus/veterinária , Nanopartículas , Vírus da Diarreia Epidêmica Suína/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Regulação Viral da Expressão Gênica , Mutação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vacinas Virais
20.
Opt Express ; 23(1): 545-51, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25835700

RESUMO

We demonstrate the existence of multiple electromagnetically induced transparencies (EIT)-like spectral responses in graphene metamaterials consisting of a series of self-assembled graphene Fabry-Pérot (FP) cavities. By exploiting the graphene plasmon resonances and phase-coupling effects, the transfer matrix model is established to theoretically predict the EIT-like responses, and the calculated results coincide well with numerical simulations. It is found that high-contrast (~90%) multiple EIT-like windows are observed over a broad range of mid-infrared. Additionally, these optical responses can be efficiently tuned by altering the Fermi level in graphene and the separations of FP cavities. The proposed scheme paves the way toward control of the multiple EIT-like responses, enabling exploration of the on-chip multifunctional electro-optic devices including multi-channel-selective filters, sensors, and modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA