Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(6): 062501, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109090

RESUMO

The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N=Z) nuclide _{44}^{88}Ru_{44} has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in ^{88}Ru were populated via the ^{54}Fe(^{36}Ar,2nγ)^{88}Ru^{*} fusion-evaporation reaction at the Grand Accélérateur National d'Ions Lourds (GANIL) accelerator complex. The observed γ-ray cascade is assigned to ^{88}Ru using clean prompt γ-γ-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N>Z nuclides. The direct observation of such a "delayed" rotational alignment in a deformed N=Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.

2.
Phys Rev Lett ; 121(19): 192502, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468583

RESUMO

Lifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50. The onset of collectivity at Z=32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector ρ field in shell-structure evolution.

3.
Phys Rev Lett ; 121(2): 022502, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085703

RESUMO

Lifetimes of the first excited 2^{+} and 4^{+} states in the extremely neutron-deficient nuclide ^{172}Pt have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+})=0.55(19) was found, similar to a handful of other such anomalous cases observed in the entire Segré chart. The observation adds to a cluster of a few extremely neutron-deficient nuclides of the heavy transition metals with neutron numbers N≈90-94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios observed in these cases. Such low values cannot, e.g., be explained within the framework of the geometrical collective model or by algebraic approaches within the interacting boson model framework. It is proposed that the group of B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios in the extremely neutron-deficient even-even W, Os, and Pt nuclei around neutron numbers N≈90-94 reveal a quantum phase transition from a seniority-conserving structure to a collective regime as a function of neutron number. Although a system governed by seniority symmetry is the only theoretical framework for which such an effect may naturally occur, the phenomenon is highly unexpected for these nuclei that are not situated near closed shells.

4.
Phys Rev Lett ; 118(16): 162501, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474951

RESUMO

Prompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N=60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z=36, of similar amplitude to that observed at N=60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g_{9/2}, d_{5/2}, and s_{1/2} orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R_{4/2} as a function of the neutron number up to N=60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N=60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N=60 and Z=36.

5.
Phys Rev Lett ; 117(22): 222302, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925748

RESUMO

The ^{54}Fe nucleus was populated from a ^{56}Fe beam impinging on a Be target with an energy of E/A=500 MeV. The internal decay via γ-ray emission of the 10^{+} metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the ^{56}Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of ^{54}Fe, suggesting that it was populated via the decay of the Δ^{0} resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10^{+} metastable state in ^{54}Fe is a consequence of the quark structure of the nucleons.

6.
Phys Rev Lett ; 117(6): 062501, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27541463

RESUMO

Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

7.
Phys Rev Lett ; 110(12): 122502, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166798

RESUMO

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.

8.
Appl Radiat Isot ; 202: 111044, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797447

RESUMO

Terbium-152 is one of four terbium radioisotopes that together form a potential theranostic toolbox for the personalised treatment of tumours. As 152 Tb decay by positron emission it can be utilised for diagnostics by positron emission tomography. For use in radiopharmaceuticals and for activity measurements by an activity calibrator a high radionuclide purity of the material and an accurate and precise knowledge of the half-life is required. Mass-separation and radiochemical purification provide a production route of high purity 152Tb. In the current work, two mass-separated samples from the CERN-ISOLDE facility have been assayed at the National Physical Laboratory to investigate the radionuclide purity. These samples have been used to perform four measurements of the half-life by three independent techniques: high-purity germanium gamma-ray spectrometry, ionisation chamber measurements and liquid scintillation counting. From the four measurement campaigns a half-life of 17.8784(95) h has been determined. The reported half-life shows a significant difference to the currently evaluated half-life (ζ-score = 3.77), with a relative difference of 2.2 % and an order of magnitude improvement in the precision. This work also shows that under controlled conditions the combination of mass-separation and radiochemical separation can provide high-purity 152Tb.

9.
Phys Rev Lett ; 104(16): 162501, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20482043

RESUMO

A measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.

10.
Phys Rev Lett ; 105(17): 172501, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231037

RESUMO

A study of cooled ¹97Au projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides ¹8³(,)¹84(,)¹86Hf and ¹86(,)¹87Ta. The results support the prediction of a strongly favored isomer region near neutron number 116.

11.
Artigo em Inglês | MEDLINE | ID: mdl-18398268

RESUMO

Over 25 million Americans suffer from osteoporosis. Bone size and strength depends both upon the level of adaptation due to physical activity (applied load), and genetics. We hypothesized that bone adaptation to loads differs among mice breeds and bone sites. Forty-five adult female mice from three inbred strains (C57BL/6 [B6], C3H/HeJ [C3], and DBA/2J [D2]) were loaded at the right tibia and ulna in vivo with non-invasive loading devices. Each loading session consisted of 99 cycles at a force range that induced approximately 2000 microstrain (microepsilon) at the mid-shaft of the tibia (2.5 to 3.5 N force) and ulna (1.5 to 2 N force). The right and left ulnae and tibiae were collected and processed using protocols for histological undecalcified cortical bone slides. Standard histomorphometry techniques were used to quantify new bone formation. The histomorphometric variables include percentage mineralizing surface (%MS), mineral apposition rate (MAR), and bone formation rate (BFR). Net loading response [right-left limb] was compared between different breeds at tibial and ulnar sites using two-way ANOVA with repeated measures (p<0.05). Significant site differences in bone adaptation response were present within each breed (p<0.005). In all the three breeds, the tibiae showed greater percentage MS, MAR and BFR than the ulna at similar in vivo load or mechanical stimulus (strain). These data suggest that the bone formation due to loading is greater in the tibiae than the ulnae. Although, no significant breed-related differences were found in response to loading, the data show greater trends in tibial bone response in B6 mice as compared to D2 and C3 mice. Our data indicate that there are site-specific skeletal differences in bone adaptation response to similar mechanical stimulus.


Assuntos
Adaptação Fisiológica/fisiologia , Tíbia/fisiologia , Ulna/fisiologia , Suporte de Carga/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Especificidade da Espécie , Estresse Mecânico , Resistência à Tração
12.
Disabil Rehabil ; 29(23): 1832-9, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18033608

RESUMO

Intramuscular injection of Botulinum toxin to produce reduction of focal muscle overactivity, and localized muscle spasm, has been utilized therapeutically for almost two decades. Muscle overactivity in neurologically normal muscle, where an imbalance exists between a relatively overactive muscle and its less active synergist or antagonist, can inhibit control of the antagonist producing a functional muscle imbalance. This brief review provides an overview of the role of muscle imbalance in sports-related pain and dysfunction, and outlines the potential for intramuscular injection of Botulinum toxin to be used as an adjunct to specific muscle re-education and functional rehabilitation in this patient group. A comprehensive understanding of normal movement and the requirements of the sporting activity are essential to allow accurate diagnosis of abnormal motor patterns and to re-educate more appropriate movement strategies. Therapeutic management of co-impairments may include stretching of tight soft tissues, specific re-education aimed at isolation of the non-dominant weak muscles and improvement in their activation, 'unlearning' of faulty motor patterns, and eventual progression onto functional exercises to anticipate gradual return to sporting activity. Intramuscular injection of Botulinum toxin, in carefully selected cases, provides short term reduction of focal muscle overactivity, and may facilitate activation of relatively 'inhibited' muscles and assist the restoration of more appropriate motor patterns.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Doenças Musculoesqueléticas/reabilitação , Fármacos Neuromusculares/uso terapêutico , Esportes , Dorso/fisiopatologia , Fenômenos Biomecânicos , Toxinas Botulínicas Tipo A/farmacologia , Transtornos Traumáticos Cumulativos/tratamento farmacológico , Transtornos Traumáticos Cumulativos/reabilitação , Humanos , Injeções Intramusculares , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Doenças Musculoesqueléticas/fisiopatologia , Fármacos Neuromusculares/farmacologia , Síndrome da Dor Patelofemoral/reabilitação , Síndrome de Colisão do Ombro/reabilitação
13.
J Bone Miner Res ; 12(2): 276-82, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9041061

RESUMO

The study tested the influence of prostaglandin E2 (PGE2) on the skeletal response to increased in vivo mechanical loading through a four-point bending device. One hundred and twenty Sprague-Dawley female rats (6 months old, 354 +/- 34 g) were divided into 12 groups to accommodate all possible combinations of doses of loads (25, 30, or 35 N) and PGE2 (0, 0.1, 0.3, or 1 mg/kg). Rats received subcutaneous injections of PGE2 daily and in vivo loading of the right tibia every Monday, Wednesday, and Friday for four weeks. Histomorphometric analysis of the periosteal and endocortical surfaces following in vivo dual fluorochrome labeling was performed on both the loaded region of the right tibial diaphysis and a similar region of the left tibial diaphysis. Without PGE2, the threshold for loading to stimulate bone formation was 30 N (peak strain 1360 mu epsilon) at the periosteal surface and 25 N (peak strain 580 mu epsilon) at the endocortical surface. Without loading, the minimum dose of PGE2 to stimulate bone formation at all surfaces was 1 mg/kg/day. When 1 mg/kg/day PGE2 was combined with the minimum effective load, an additive effect of PGE2 and loading on bone formation was observed at the endocortical surface, but a synergistic effect was noted at the periosteal surface. No combined effect of ineffective doses of loading and PGE2 was found. A synergistic effect at peak strains of approximately 1625 mu epsilon on the periosteal surface could suggest either the involvement of locally produced growth factors or autoregulation of endogenous synthesis of PGE2 by exogenously administered PGE2.


Assuntos
Osso e Ossos/efeitos dos fármacos , Dinoprostona/farmacologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Dinoprostona/fisiologia , Relação Dose-Resposta a Droga , Feminino , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Tíbia/efeitos dos fármacos , Tíbia/fisiologia
14.
J Bone Miner Res ; 9(8): 1143-52, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7976496

RESUMO

The rat tibia four-point bending model is a new mechanical loading model in which force is applied through external pads to the rat lower limb. The advantages of the model are controlled force application to a well-defined bone, noninvasive external loading, and the addition of loads to normal daily activity. A disadvantage of the model is that the pads create local pressure on the leg at the contact sites. This study examined the differences in tibial response to bending strains and to local pressure under the pads. A total of 30 adult Sprague-Dawley rats were randomized into three external loading groups: bending, cyclic pressure, and static pressure. The right leg of each rat was externally loaded to create either bending or local pressure without bending; the left leg served as a control. Strains on the lateral surface averaged 1200 mu epsilon in compression during bending load application and < 200 mu epsilon in compression during pressure loading. Histomorphometric data were collected from three regions: the maximal bending region, under the loading pads, and outside the maximal bending region. In the maximal bending region, bending loads created greater mineral apposition rate (MAR) on the lateral surface and greater MAR and formation surface on the medial surface of loaded than control tibiae. The region under the bending pad was exposed to similar bending strains and showed the same pattern of increased MAR as sections from the maximal bending region. Cyclic pressure had no effect on periosteal MAR or formation surface. Static pressure increased MAR only on the lateral tibial surface. Bending stimulates bone formation in regions with the highest bending strains. Similar forces applied only in the form of pressure loading do not stimulate tibial formation either at the contact site or between loading pads. These results suggest that externally applied forces of moderate magnitude stimulate bone formation primarily as a result of increased bending strains, not local pressure at the contact site.


Assuntos
Desenvolvimento Ósseo/fisiologia , Tíbia/fisiologia , Suporte de Carga/fisiologia , Animais , Densidade Óssea/fisiologia , Feminino , Modelos Biológicos , Periósteo/fisiologia , Estimulação Física , Pressão , Ratos , Ratos Sprague-Dawley
15.
J Bone Miner Res ; 9(2): 203-11, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8140933

RESUMO

Mechanical loading of the living skeleton influences bone formation, mass, and strength. The primary purpose of the present study was to examine the influence of different loading schedules (days/week) on the bone response to external loading using an in vivo rat tibia four-point bending model. Three studies were conducted to (1) characterize the loaded region, (2) examine the variation of the response within the loaded region, and (3) test the response to different loading schedules. In all studies adult female retired breeder Sprague-Dawley rats were used (6 months, 285 g). First, the location of the loaded region during four-point bending was determined by radiogrammetry of 7 rats. Second, 5 rats were externally loaded for 8 of 10 days at 31 N, 36 cycles, and 2 Hz (1349 +/- 244 mu epsilon). The extent of labeled (forming) periosteal and endocortical surface in the loaded region was compared both among four serial sections from the same tibia and between the loaded and the contralateral tibiae. Finally, 50 rats were randomized into five groups: two nonloaded, control and sham, and three loaded, alternate day, Monday, Wednesday, and Friday, and daily. The rats were externally loaded for 3 weeks at 35 N, 36 cycles, and 2 Hz (1533 +/- 308 mu epsilon). The tibia and fibula were studied for labeled surfaces and mineral apposition rate. For adult female rats with tibial length 39 mm, the loaded region was located 3.5-14 (+/- 0.7) mm proximal to the tibia-fibula junction (TFJ).(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Densidade Óssea , Desenvolvimento Ósseo/fisiologia , Calcificação Fisiológica , Tíbia/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Modelos Biológicos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Tíbia/anatomia & histologia
16.
Bone ; 29(2): 121-5, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11502472

RESUMO

Prostaglandins play an important role in regulating the bone adaptation response to mechanical stimuli. Prostaglandin E2 (PGE2) is an effective modulator of bone metabolism. Administration of PGE2 to rodents results in increased cancellous and cortical bone mass translating into enhanced mechanical strength. The PGE2 influence on bone is mediated through four well-characterized receptors (EP1, EP2, EP3, and EP4). Although the PGE2 pathways and mechanisms of action on cells involved in bone adaptation are still under investigation, it is now known that each receptor plays a unique role in regulating PGE2-related bone cell function. The EP1 subtype is coupled with Ca2+ mobilization. The EP2 subtype stimulates cyclic adenosine monophosphate (cAMP) formation. cAMP in turn is responsible for the early cellular signal that stimulates bone formation. This study compared physical and biomechanical properties of bone in EP1 and EP2 knockout mice to their corresponding wild-type controls. Ash weight was measured in the ulnae, and femurs and vertebral bodies were tested in three-point bending and compression, respectively. The results suggest: (a) EP1 receptors have a minimal influence on skeletal strength or size in mice; and (b) EP2 receptors have a major influence on the biomechanical properties of bone in mice. The absence of EP2 receptors resulted in weak bone biomechanical strength properties in the EP2 knockout model as compared with the corresponding wild-type control mice.


Assuntos
Osso e Ossos/fisiologia , Receptores de Prostaglandina E/fisiologia , Animais , Fenômenos Biomecânicos , Osso e Ossos/anatomia & histologia , AMP Cíclico/biossíntese , Feminino , Camundongos , Camundongos Knockout , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP1 , Receptores de Prostaglandina E Subtipo EP2
17.
Bone ; 29(4): 352-60, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11595618

RESUMO

This study compares effects of maintenance doses of human parathyroid hormone [hPTH(1-84)], 17beta-estradiol (E2), and risedronate on distal femur bone mineral density and proximal tibia cancellous bone histomorphometry in ovariectomized (ovx), osteopenic rats previously administered a higher dose of hPTH. Nine groups (n = 8) of 3.5-month-old ovx or intact Sprague-Dawley rats were left untreated for 11 weeks to allow for the development of cancellous osteopenia in the ovx groups. Next, the ovx rats received subcutaneous injections of hPTH (75 microg/kg per day, three times per week) or vehicle for 12 weeks. Treatments were then changed to E2 (10 microg/kg per day, two times per week), risedronate (Ris; 3 microg/kg per day, three times per week), low-dose hPTH(1-84) (LowPTH; 25 microg/kg per day, three times per week), or vehicle, and administered for 36 weeks. The intact control group remained untreated for the duration of study. Femora and tibiae were collected at weeks -11 (baseline); 0 (ovx effect); 12 (hPTH effect), and 24, 36, and 48 (maintenance effects). Endpoints evaluated included distal femur bone mineral density (BMD) and proximal tibia cancellous bone volume (BV/TV), osteoclast surface (Oc.S), mineralizing surface (MS), mineral apposition rate (MAR), and bone formation rate (BFR). Ovariectomy had a negative effect on distal femur BMD and proximal tibia BV/TV. Treatment of ovx rats with hPTH for 12 weeks resulted in higher BMD in comparison to intact controls, and higher cancellous BV/TV in comparison to ovx controls. Discontinuation of hPTH resulted in loss of gained BMD within 24 weeks and loss of gained BV/TV within 12 weeks. Treatment of ovx rats with hPTH for 12 weeks followed by E2 treatment left BMD and BV/TV similar to vehicle-treated ovx rats by week 48 (36 weeks after commencement of the E2 maintenance treatment). Maintenance treatment with risedronate resulted in BMD and BV/TV similar to that of intact controls. Maintenance treatment with low-dose hPTH resulted in greater BMD and similar BV/TV in comparison to intact controls. MS and BFR were highest after low-dose hPTH administration. MS and BFR were lowest after E2 or risedronate, whereas Oc.S was lowest after risedronate administration. Thus, in osteopenic rats, the increment in distal femur BMD and proximal tibia BV/TV gained by 12 weeks of hPTH treatment was lost within 24 and 12 weeks of treatment termination, respectively. Low-dose hPTH maintained BMD and BV/TV after hPTH treatment by stimulating bone formation, whereas risedronate maintained BMD and BV/TV by reducing bone resorption. E2 in a maintenance dose failed to maintain BMD and BV/TV after withdrawal of hPTH treatment.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Estrogênios/farmacologia , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/farmacologia , Hormônio Paratireóideo/farmacologia , Tíbia/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/mortalidade , Difosfonatos/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Ácido Risedrônico , Taxa de Sobrevida , Tíbia/metabolismo
18.
Bone ; 23(5): 409-15, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9823446

RESUMO

The time course of the bone cellular response to mechanical loading is important in the design of optimal exercise prescriptions. This study examined the time course of periosteal cellular changes in the rat tibia following a single exposure of mechanical loading in four-point bending. The right tibiae of adult female Sprague Dawley rats (n = 48, 346 +/- 29 g) were loaded at 40 N (2000 mu epsilon) for 36 cycles at 2 Hz. Right loaded (L) and left nonloaded (NL) tibiae were collected on days 1, 2, 3, 4, 6, and 9 after loading. Cross sections from the loaded region were examined for periosteal differences in bone lining cell surface length, osteoblast surface length, and both alkaline phosphatase-positive cell surface length and width in the cellular layer. A single loading session increased osteoblast surface length as early as day 2, with a peak in expression on day 3. Nine days after a single loading session osteoblast surface length was not different from nonloaded control levels. Alkaline phosphatase width in the cellular periosteum was elevated by day 2 and remained elevated through day 9. This study shows the transient increase in osteoblast surface following a single loading session. It provides fundamental information regarding the timing of osteoblast appearance and the longevity of the response following mechanical stimulation.


Assuntos
Osteoblastos/fisiologia , Periósteo/fisiologia , Suporte de Carga/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Fenômenos Biomecânicos , Feminino , Processamento de Imagem Assistida por Computador , Periósteo/citologia , Ratos , Ratos Sprague-Dawley , Tíbia/fisiologia , Fatores de Tempo
19.
Bone ; 28(3): 251-60, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11248654

RESUMO

The purpose of this cross-sectional study was to evaluate the effects of human parathyroid hormone(1-84) (hPTH) followed by maintenance treatment with 17beta-estradiol (E(2)), risedronate (Ris), or a reduced dose of hPTH (LowPTH) on cortical bone in the ovariectomized (ovx) rat. Eight groups of ovx and one group of intact female rats (3.5 months) were left untreated for 11 weeks. For the following 12 weeks, four groups received subcutaneous injections of hPTH (75 microg/kg per day on 3 days/week) and four groups received vehicle. Treatments were then changed to E(2) (10 microg/kg per day on 2 days/week), Ris (3 microg/kg per day on 3 days/week), LowPTH (25 microg/kg per day on 3 days/week), or vehicle. Bone tissue was collected at weeks -11 (baseline), 0 (ovx effect), 12 (hPTH effect), 24, 36, and 48 (maintenance effect). Bone mineral density (BMD) and bone mineral content (BMC) of the diaphyseal femur and total cross-sectional area (Tt.Ar), marrow area (Ma.Ar), cortical area (Ct.Ar), and periosteal and endocortical bone formation of the tibia were measured. Ovariectomy resulted in lower BMD (weeks 0-48), unaffected BMC, and greater Tt.Ar (weeks 12 and 36), Ma.Ar (week 48), and Ct.Ar (weeks 0 and 12) compared with intact rats. Endocortical and periosteal bone formation were greater in the ovx than in the intact rats up to 23 weeks postovariectomy. Treatment of ovx rats with hPTH for 12 weeks resulted in greater cortical BMD, BMC, and endocortical bone formation than in intact or ovx controls. In ovx rats pretreated with hPTH and then treated with Ris for 36 weeks, BMD and BMC were greater and Ma.Ar was smaller than in ovx controls. In ovx rats pretreated with hPTH and then treated with LowPTH, BMD, BMC, Ct.Ar, and endocortical bone formation were greater and Ma.Ar was smaller than in ovx controls. Treatment of hPTH-pretreated rats with E(2) for 36 weeks did not affect cortical BMD, BMC, and Ct.Ar, although periosteal bone formation was lower in the E(2) group compared with the ovx group. Thus, in ovariectomized rats, cortical bone gained by 12 weeks of hPTH treatment was maintained for up to 36 weeks by treatment with risedronate or low-dose hPTH, but not with 17beta-estradiol.


Assuntos
Fêmur/efeitos dos fármacos , Ovariectomia , Hormônio Paratireóideo/farmacologia , Animais , Medula Óssea/efeitos dos fármacos , Estudos Transversais , Estradiol/farmacologia , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/farmacologia , Feminino , Fêmur/anatomia & histologia , Humanos , Ratos , Ratos Sprague-Dawley , Ácido Risedrônico
20.
Bone ; 35(1): 162-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15207752

RESUMO

The mutation responsible for the high bone mass (HBM) phenotype has been postulated to act through the adaptive response of bone to mechanical load resulting in denser and stronger skeletons in humans and animals. The bone phenotype of members of a HBM family is characterized by normally shaped bones that are exceptionally dense, particularly at load bearing sites [Cancer Res. 59 (1999) 1572]. The high bone mass (HBM) mutation was identified as a glycine to valine substitution at amino acid residue 171 in the gene coding for low-density lipoprotein receptor-related protein 5 (LRP5) [Bone Miner. Res. 16(4) (2001) 758]. Thus, efforts have focused on the examination of the role of LRP5 and the G171V mutation in bone mechanotransduction responses [J. Bone Miner. Res 18 (2002) 960]. Transgenic mice expressing the human G171V mutation have been shown to have skeletal phenotypes remarkably similar to those seen in affected individuals. In this study, we have identified differences in biomechanical (structural and apparent material) properties, bone mass/ash, and bone stiffness of cortical and cancellous bone driven by the G171V mutation in LRP5. As in humans, the LRP5 G171V plays an important role in regulating bone structural phenotypes in mice. These bone phenotypes include greater structural and apparent material properties in HBM HET as compared to non-transgenic littermates (NTG) mice. Body size and weight in HBM HET were similar to that in NTG control mice. However, the LRP5 G171V mutation in HET mice results in a skeleton that has greater structural (femoral shaft, femoral neck, tibiae, vertebral body) and apparent material (vertebral body) strength, percent bone ash weight (ulnae), and tibial stiffness. Despite similar body weight to NTG mice, the denser and stiffer bones in G171V mice may represent greater bone formation sensitivity to normal mechanical stimuli resulting in an overadaptation of skeleton to weight-related forces.


Assuntos
Densidade Óssea/genética , Osso e Ossos/fisiologia , Proteínas Relacionadas a Receptor de LDL/genética , Substituição de Aminoácidos , Animais , Fenômenos Biomecânicos , Peso Corporal , Feminino , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA