Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 60(5): 945-960, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608545

RESUMO

Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm that is widely grown in tropical and subtropical regions. The coconut palm is well known for its ability to accumulate large amounts of oil, approximately 63% of the seed weight. Coconut oil varies significantly from other vegetable oils as it contains a high proportion of medium-chain fatty acids (MCFA; 85%). The unique composition of coconut oil raises interest in understanding how the coconut palm produces oil of a high saturated MCFA content, and if such an oil profile could be replicated via biotechnology interventions. Although some gene discovery work has been performed there is still a significant gap in the knowledge associated with coconut's oil production pathways. In this study, a de novo transcriptome was assembled for developing coconut endosperm to identify genes involved in the synthesis of lipids, particularly triacylglycerol. Of particular interest were thioesterases, acyltransferases and oleosins because of their involvement in the processes of releasing fatty acids for assembly, esterification of fatty acids into glycerolipids and protecting oils from degradation, respectively. It is hypothesized that some of these genes may exhibit a strong substrate preference for MCFA and hence may assist the future development of vegetable oils with an enriched MCFA composition. In this study, we identified and confirmed functionality of five candidate genes from the gene families of interest. This study will benefit future work in areas of increasing vegetable oil production and the tailoring of oil fatty acid compositions.


Assuntos
Endosperma/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Proteínas de Plantas/genética , Nicotiana/genética , Triglicerídeos/metabolismo
2.
Plant Biotechnol J ; 15(11): 1397-1408, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28301719

RESUMO

Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Arabidopsis/genética , Arecaceae/enzimologia , Biomassa , Morte Celular , Cinnamomum camphora/genética , Cocos/genética , Diacilglicerol O-Aciltransferase/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Láuricos/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Triglicerídeos
3.
BMC Genomics ; 15: 785, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25214042

RESUMO

BACKGROUND: A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen's genome. RESULTS: Our bioinformatic analysis indicates that 431 (2%) of the 20,825 predicted proteins encoded by the P. parasitica genome, are carbohydrate-active enzymes (CAZymes) involved in the degradation of cell wall polysaccharides. Of the 431 proteins, 337 contain classical N-terminal secretion signals and 67 are predicted to be targeted to the non-classical secretion pathway. Identification of CAZyme catalytic activity based on primary protein sequence is difficult, nevertheless, detailed comparisons with previously characterized enzymes has allowed us to determine likely enzyme activities and targeted substrates for many of the P. parasitica CWDEs. Some proteins (12%) contain more than one CAZyme module but, in most cases, multiple modules are from the same CAZyme family. Only 12 P. parasitica CWDEs contain both catalytically-active (glycosyl hydrolase) and non-catalytic (carbohydrate binding) modules, a situation that contrasts with that in fungal phytopathogens. Other striking differences between the complements of CWDEs in P. parasitica and fungal phytopathogens are seen in the CAZyme families that target cellulose, pectins or ß-1,3-glucans (e.g. callose). About 25% of P. parasitica CAZymes are solely directed towards pectin degradation, with the majority coming from pectin lyase or carbohydrate esterase families. Fungal phytopathogens typically contain less than half the numbers of these CAZymes. The P. parasitica genome, like that of other Oomycetes, is rich in CAZymes that target ß-1,3-glucans. CONCLUSIONS: This detailed analysis of the full complement of P. parasitica cell wall degrading enzymes provides a framework for an in-depth study of patterns of expression of these pathogen genes during plant infection and the induction or repression of expression by selected substrates.


Assuntos
Parede Celular/metabolismo , Biologia Computacional/métodos , Phytophthora/enzimologia , Proteínas/metabolismo , Metabolismo dos Carboidratos , Celulose/metabolismo , Genoma , Phytophthora/citologia , Phytophthora/genética , Phytophthora/metabolismo , Via Secretória
4.
Front Plant Sci ; 12: 639014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859660

RESUMO

Safflower (Carthamus tinctorius) is a member of the Asteraceae family that is grown in temperate climates as an oil seed crop. Most commercially grown safflower varieties can be sown in late winter or early spring and flower rapidly in the absence of overwintering. There are winter-hardy safflower accessions that can be sown in autumn and survive over-wintering. Here, we show that a winter-hardy safflower possesses a vernalization response, whereby flowering is accelerated by exposing germinating seeds to prolonged cold. The impact of vernalization was quantitative, such that increasing the duration of cold treatment accelerated flowering to a greater extent, until the response was saturated after 2 weeks exposure to low-temperatures. To investigate the molecular-basis of the vernalization-response in safflower, transcriptome activity was compared and contrasted between vernalized versus non-vernalized plants, in both 'winter hardy' and 'spring' cultivars. These genome-wide expression analyses identified a small set of transcripts that are both differentially expressed following vernalization and that also have different expression levels in the spring versus winter safflowers. Four of these transcripts were quantitatively induced by vernalization in a winter hardy safflower but show high basal levels in spring safflower. Phylogenetic analyses confidently assigned that the nucleotide sequences of the four differentially expressed transcripts are related to FLOWERING LOCUS T (FT), FRUITFUL (FUL), and two genes within the MADS-like clade genes. Gene models were built for each of these sequences by assembling an improved safflower reference genome using PacBio-based long-read sequencing, covering 85% of the genome, with N50 at 594,000 bp in 3000 contigs. Possible evolutionary relationships between the vernalization response of safflower and those of other plants are discussed.

5.
PLoS One ; 10(9): e0136899, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332397

RESUMO

RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, ß-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include ß-1,4-glucosidases, ß-1,4-glucanases, ß-1,4-galactanases, a ß-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade ß-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of ß-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Lupinus/parasitologia , Phytophthora/enzimologia , Phytophthora/genética , Raízes de Plantas/parasitologia , Parede Celular/metabolismo , Celulose/metabolismo , Lupinus/metabolismo , Pectinas/metabolismo , Phytophthora/fisiologia , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Transcriptoma , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA