Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(3): 526-534, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37820031

RESUMO

BACKGROUND: Optimization of antimicrobial stewardship is key to tackling antimicrobial resistance, which is exacerbated by overprescription of antibiotics in pediatric emergency departments (EDs). We described patterns of empiric antibiotic use in European EDs and characterized appropriateness and consistency of prescribing. METHODS: Between August 2016 and December 2019, febrile children attending EDs in 9 European countries with suspected infection were recruited into the PERFORM (Personalised Risk Assessment in Febrile Illness to Optimise Real-Life Management) study. Empiric systemic antibiotic use was determined in view of assigned final "bacterial" or "viral" phenotype. Antibiotics were classified according to the World Health Organization (WHO) AWaRe classification. RESULTS: Of 2130 febrile episodes (excluding children with nonbacterial/nonviral phenotypes), 1549 (72.7%) were assigned a bacterial and 581 (27.3%) a viral phenotype. A total of 1318 of 1549 episodes (85.1%) with a bacterial and 269 of 581 (46.3%) with a viral phenotype received empiric systemic antibiotics (in the first 2 days of admission). Of those, the majority (87.8% in the bacterial and 87.0% in the viral group) received parenteral antibiotics. The top 3 antibiotics prescribed were third-generation cephalosporins, penicillins, and penicillin/ß-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the viral group, 216 of 269 (80.3%) received ≥1 antibiotic in the "Watch" category. CONCLUSIONS: Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial overprescription of antibiotics. A significant proportion of patients with a viral phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology could significantly improve antimicrobial stewardship.


Assuntos
Antibacterianos , Gestão de Antimicrobianos , Criança , Humanos , Antibacterianos/uso terapêutico , Gestão de Antimicrobianos/métodos , Prescrições de Medicamentos , Europa (Continente) , Serviço Hospitalar de Emergência , Febre/diagnóstico , Febre/tratamento farmacológico , Penicilinas/uso terapêutico
2.
N Engl J Med ; 385(1): 11-22, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133854

RESUMO

BACKGROUND: Evidence is urgently needed to support treatment decisions for children with multisystem inflammatory syndrome (MIS-C) associated with severe acute respiratory syndrome coronavirus 2. METHODS: We performed an international observational cohort study of clinical and outcome data regarding suspected MIS-C that had been uploaded by physicians onto a Web-based database. We used inverse-probability weighting and generalized linear models to evaluate intravenous immune globulin (IVIG) as a reference, as compared with IVIG plus glucocorticoids and glucocorticoids alone. There were two primary outcomes: the first was a composite of inotropic support or mechanical ventilation by day 2 or later or death; the second was a reduction in disease severity on an ordinal scale by day 2. Secondary outcomes included treatment escalation and the time until a reduction in organ failure and inflammation. RESULTS: Data were available regarding the course of treatment for 614 children from 32 countries from June 2020 through February 2021; 490 met the World Health Organization criteria for MIS-C. Of the 614 children with suspected MIS-C, 246 received primary treatment with IVIG alone, 208 with IVIG plus glucocorticoids, and 99 with glucocorticoids alone; 22 children received other treatment combinations, including biologic agents, and 39 received no immunomodulatory therapy. Receipt of inotropic or ventilatory support or death occurred in 56 patients who received IVIG plus glucocorticoids (adjusted odds ratio for the comparison with IVIG alone, 0.77; 95% confidence interval [CI], 0.33 to 1.82) and in 17 patients who received glucocorticoids alone (adjusted odds ratio, 0.54; 95% CI, 0.22 to 1.33). The adjusted odds ratios for a reduction in disease severity were similar in the two groups, as compared with IVIG alone (0.90 for IVIG plus glucocorticoids and 0.93 for glucocorticoids alone). The time until a reduction in disease severity was similar in the three groups. CONCLUSIONS: We found no evidence that recovery from MIS-C differed after primary treatment with IVIG alone, IVIG plus glucocorticoids, or glucocorticoids alone, although significant differences may emerge as more data accrue. (Funded by the European Union's Horizon 2020 Program and others; BATS ISRCTN number, ISRCTN69546370.).


Assuntos
Tratamento Farmacológico da COVID-19 , Glucocorticoides/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Adolescente , Anticorpos Antivirais , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/terapia , Criança , Pré-Escolar , Estudos de Coortes , Intervalos de Confiança , Quimioterapia Combinada , Feminino , Hospitalização , Humanos , Imunomodulação , Masculino , Pontuação de Propensão , Análise de Regressão , Respiração Artificial , SARS-CoV-2/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/mortalidade , Síndrome de Resposta Inflamatória Sistêmica/terapia , Resultado do Tratamento
3.
Biochem Soc Trans ; 52(2): 651-660, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421063

RESUMO

The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.


Assuntos
Malária , Transcriptoma , Humanos , Malária/sangue , Animais , Biomarcadores/sangue , Pesquisa Translacional Biomédica , Prognóstico , Antimaláricos/uso terapêutico
4.
Analyst ; 148(13): 3036-3044, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37265396

RESUMO

Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC). To address this issue, we have developed a paper-based NAE method using cellulose filter papers (DBSFP) that operates without the need for electricity (at room temperature). Our method allows for NAE in less than 7 min, and it involves grade 3 filter paper pre-treated with 8% (v/v) igepal surfactant, 1 min washing step with 1× PBS, and 5 min incubation at room temperature in 1× TE buffer. The performance of the methodology was assessed with loop-mediated isothermal amplification (LAMP), targeting the human reference gene beta-actin and the kelch 13 gene from P. falciparum. The developed method was evaluated against FTA cards and magnetic bead-based purification, using time-to-positive (min) for comparative analysis. Furthermore, we optimised our approach to take advantage of the dual functionality of the paper-based extraction, allowing for elution (eluted disk) as well as direct placement of the disk in the LAMP reaction (in situ disk). This flexibility extends to eukaryotic cells, bacterial cells, and viral particles. We successfully validated the method for RNA/DNA detection and demonstrated its compatibility with whole blood stored in anticoagulants. Additionally, we studied the compatibility of DBSFP with colorimetric and lateral flow detection, showcasing its potential for POC applications. Across various tested matrices, targets, and experimental conditions, our results were comparable to those obtained using gold standard methods, highlighting the versatility of our methodology. In summary, this manuscript presents a cost-effective solution for NAE from DBS, enabling molecular testing in virtually any POC setting. When combined with LAMP, our approach provides sample-to-result detection in under 35 minutes.


Assuntos
Testes Hematológicos , Sistemas Automatizados de Assistência Junto ao Leito , Ácidos Nucleicos/isolamento & purificação , Testes Hematológicos/métodos , Humanos , Actinas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Malária Falciparum/diagnóstico , Colorimetria , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação
5.
BMC Med ; 20(1): 25, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022051

RESUMO

Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Carga Viral
6.
Malar J ; 21(1): 342, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397106

RESUMO

BACKGROUND: Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is presented in a large, prospectively collected dataset (MalariaGEN). METHODS: The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analyses were performed to investigate whether the STR interacted with any clinical variables. RESULTS: Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 0.91-1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 95% CI 0.82-0.99). There was no evidence of an interaction with any clinical variables. CONCLUSIONS: Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains unanswered.


Assuntos
Heme Oxigenase-1 , Malária Cerebral , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Predisposição Genética para Doença , Polimorfismo Genético , Alelos , Malária Cerebral/genética
7.
PLoS Med ; 17(10): e1003359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075101

RESUMO

BACKGROUND: Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as 'test-and-treat' policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM. METHODS AND FINDINGS: A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case-control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle-Ottawa scale, and all studies were ranked as 'Good', scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged <15 years) SM patients and 5,780 (79.6% aged <15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07-1.64 for a delay of >24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92-4.06; p < 0.001) for a delay of 2-3 days and 5.46 (95% CI: 3.49-8.53; p < 0.001) for a delay of >7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] >3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24-4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70-9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify. CONCLUSIONS: Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment.


Assuntos
Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Antimaláricos/uso terapêutico , Benin/epidemiologia , Agentes Comunitários de Saúde , Progressão da Doença , Gâmbia/epidemiologia , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Malásia/epidemiologia , Moçambique/epidemiologia , Plasmodium falciparum/patogenicidade , Tanzânia/epidemiologia , Tempo para o Tratamento/economia , Uganda/epidemiologia , Iêmen/epidemiologia , Zâmbia/epidemiologia
8.
BMC Med ; 18(1): 375, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33250058

RESUMO

BACKGROUND: Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI), remains a challenge. Furthermore, the success of rapid diagnostic tests (RDTs) is threatened by Pfhrp2/3 deletions and decreased sensitivity at low parasitaemia. Analysis of haematological indices can be used to support the identification of possible malaria cases for further diagnosis, especially in travellers returning from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify nMI, UM, and severe malaria (SM) using haematological parameters. METHODS: We obtained haematological data from 2,207 participants collected in Ghana: nMI (n = 978), SM (n = 526), and UM (n = 703). Six different ML approaches were tested, to select the best approach. An artificial neural network (ANN) with three hidden layers was used for multi-classification of UM, SM, and uMI. Binary classifiers were developed to further identify the parameters that can distinguish UM or SM from nMI. Local interpretable model-agnostic explanations (LIME) were used to explain the binary classifiers. RESULTS: The multi-classification model had greater than 85% training and testing accuracy to distinguish clinical malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood cell (RBC) counts, lymphocyte counts, and percentages as the top classifiers of UM with 0.801 test accuracy (AUC = 0.866 and F1 score = 0.747). To distinguish SM from nMI, the classifier had a test accuracy of 0.96 (AUC = 0.983 and F1 score = 0.944) with mean platelet volume and mean cell volume being the unique classifiers of SM. Random forest was used to confirm the classifications, and it showed that platelet and RBC counts were the major classifiers of UM, regardless of possible confounders such as patient age and sampling location. CONCLUSION: The study provides proof of concept methods that classify UM and SM from nMI, showing that the ML approach is a feasible tool for clinical decision support. In the future, ML approaches could be incorporated into clinical decision-support algorithms for the diagnosis of acute febrile illness and monitoring response to acute SM treatment particularly in endemic settings.


Assuntos
Aprendizado de Máquina/normas , Malária/sangue , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Resultado do Tratamento
9.
Malar J ; 19(1): 85, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085712

RESUMO

BACKGROUND: Hypophosphatemia is common in severe infections including malaria. Previous studies suggested that serum phosphate concentrations correlate with temperature, but it is unclear whether the type of infection and other factors occurring during infection influence this association. Here relationships were investigated between serum phosphate levels, cause of fever, demographic, clinical and laboratory parameters. METHODS: Anonymized data were analysed from 633 adults with malaria or other febrile illness admitted to Northwick Park Hospital, London, UK. Univariable and multivariable generalized linear model analyses were performed to examine associations with serum phosphate levels. Interaction terms were included to investigate whether cause of fever (malaria vs other illness), malaria parasite species, or malaria severity influenced the association of other variables with phosphate. RESULTS: Hypophosphatemia was common in subjects with malaria (211/542 (39%)), and in other febrile illnesses (24/91 (26%)), however median phosphate levels did not differ significantly by diagnostic group, parasite species or severity of malaria. In all analyses, there were highly significant negative associations between serum phosphate and axillary temperature, and positive associations between serum phosphate and platelet count. There were no significant interactions between these variables and cause of fever, parasite species or severity of illness. Sodium and potassium concentrations were associated with serum phosphate in subjects with malaria and when data from all subjects was combined. CONCLUSION: Serum phosphate is consistently associated with temperature and platelet count in adults with diverse causes of fever. This may be a consequence of phosphate shifts from plasma into cells to support ATP generation for thermogenesis and platelet activation.


Assuntos
Temperatura Corporal , Malária Falciparum/metabolismo , Malária Vivax/metabolismo , Fosfatos/sangue , Adulto , Testes Diagnósticos de Rotina , Feminino , Humanos , Londres , Malária Falciparum/sangue , Malária Vivax/sangue , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Malar J ; 19(1): 364, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036624

RESUMO

BACKGROUND: The immune mechanisms that determine whether a Plasmodium falciparum infection would be symptomatic or asymptomatic are not fully understood. Several studies have been carried out to characterize the associations between disease outcomes and leucocyte numbers. However, the majority of these studies have been conducted in adults with acute uncomplicated malaria, despite children being the most vulnerable group. METHODS: Peripheral blood leucocyte subpopulations were characterized in children with acute uncomplicated (symptomatic; n = 25) or asymptomatic (n = 67) P. falciparum malaria, as well as malaria-free (uninfected) children (n = 16) from Obom, a sub-district of Accra, Ghana. Leucocyte subpopulations were enumerated by flow cytometry and correlated with two measures of parasite load: (a) plasma levels of P. falciparum histidine-rich protein 2 (PfHRP2) as a proxy for parasite biomass and (b) peripheral blood parasite densities determined by microscopy. RESULTS: In children with symptomatic P. falciparum infections, the proportions and absolute cell counts of total (CD3 +) T cells, CD4 + T cells, CD8 + T cells, CD19 + B cells and CD11c + dendritic cells (DCs) were significantly lower as compared to asymptomatic P. falciparum-infected and uninfected children. Notably, CD15 + neutrophil proportions and cell counts were significantly increased in symptomatic children. There was no significant difference in the proportions and absolute counts of CD14 + monocytes amongst the three study groups. As expected, measures of parasite load were significantly higher in symptomatic cases. Remarkably, PfHRP2 levels and parasite densities negatively correlated with both the proportions and absolute numbers of peripheral leucocyte subsets: CD3 + T, CD4 + T, CD8 + T, CD19 + B, CD56 + NK, γδ + T and CD11c + cells. In contrast, both PfHRP2 levels and parasite densities positively correlated with the proportions and absolute numbers of CD15 + cells. CONCLUSIONS: Symptomatic P. falciparum infection is correlated with an increase in the levels of peripheral blood neutrophils, indicating a role for this cell type in disease pathogenesis. Parasite load is a key determinant of peripheral cell numbers during malaria infections.


Assuntos
Antígenos de Protozoários/análise , Leucócitos/parasitologia , Malária Falciparum/parasitologia , Carga Parasitária , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/análise , Infecções Assintomáticas , Criança , Feminino , Citometria de Fluxo , Gana , Humanos , Masculino
12.
Curr Opin Infect Dis ; 31(3): 209-215, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29698255

RESUMO

PURPOSE OF REVIEW: Advances in diagnostic methods mean that co-infections are increasingly being detected in clinical practice, yet their significance is not always obvious. In parallel, basic science studies are increasingly investigating interactions between pathogens to try to explain real-life observations and elucidate biological mechanisms. RECENT FINDINGS: Co-infections may be insignificant, detrimental, or even beneficial, and these outcomes can occur through multiple levels of interactions which include modulation of the host response, altering the performance of diagnostic tests, and drug-drug interactions during treatment. The harmful effects of chronic co-infections such as tuberculosis or Hepatitis B and C in association with HIV are well established, and recent studies have focussed on strategies to mitigate these effects. However, consequences of many acute co-infections are much less certain, and recent conflicting findings simply highlight many of the challenges of studying naturally acquired infections in humans. SUMMARY: Tackling these challenges, using animal models, or careful prospective studies in humans may prove to be worthwhile. There are already tantalizing examples where identification and treatment of relevant co-infections seems to hold promise for improved health outcomes.


Assuntos
Coinfecção/diagnóstico , Coinfecção/patologia , Gerenciamento Clínico , Animais , Anti-Infecciosos/uso terapêutico , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , Testes Diagnósticos de Rotina , Modelos Animais de Doenças , Interações Medicamentosas , Humanos
13.
PLoS Pathog ; 11(9): e1005119, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26407009

RESUMO

Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis.


Assuntos
Amidoidrolases/sangue , Arginina/sangue , Malária/metabolismo , Óxido Nítrico/metabolismo , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Gâmbia , Homeostase/fisiologia , Humanos , Fígado/enzimologia , Camundongos
15.
Haematologica ; 100(12): 1508-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26315932

RESUMO

Sickle cell disease is a risk factor for invasive bacterial infections, and splenic dysfunction is believed to be the main underlying cause. We have previously shown that the liberation of heme in acute hemolysis can induce heme oxygenase-1 during granulopoiesis, impairing the ability of developing neutrophils to mount a bactericidal oxidative burst, and increasing susceptibility to bacterial infection. We hypothesized that this may also occur with the chronic hemolysis of sickle cell disease, potentially contributing to susceptibility to infections. We found that neutrophil oxidative burst activity was significantly lower in treatment-naïve children with sickle cell disease compared to age-, gender- and ethnicity-matched controls, whilst degranulation was similar. The defect in neutrophil oxidative burst was quantitatively related to both systemic heme oxygenase-1 activity (assessed by carboxyhemoglobin concentration) and neutrophil mobilization. A distinct population of heme oxygenase-1-expressing cells was present in the bone marrow of children with sickle cell disease, but not in healthy children, with a surface marker profile consistent with neutrophil progenitors (CD49d(Hi) CD24(Lo) CD15(Int) CD16(Int) CD11b(+/-)). Incubation of promyelocytic HL-60 cells with the heme oxygenase-1 substrate and inducer, hemin, demonstrated that heme oxygenase-1 induction during neutrophilic differentiation could reduce oxidative burst capacity. These findings indicate that impairment of neutrophil oxidative burst activity in sickle cell disease is associated with hemolysis and heme oxygenase-1 expression. Neutrophil dysfunction might contribute to risk of infection in sickle cell disease, and measurement of neutrophil oxidative burst might be used to identify patients at greatest risk of infection, who might benefit from enhanced prophylaxis.


Assuntos
Anemia Falciforme/enzimologia , Heme Oxigenase-1/metabolismo , Neutrófilos/enzimologia , Explosão Respiratória , Adolescente , Anemia Falciforme/patologia , Antígenos CD/metabolismo , Criança , Pré-Escolar , Feminino , Células HL-60 , Humanos , Lactente , Masculino , Neutrófilos/patologia
17.
PLoS Pathog ; 8(3): e1002579, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438807

RESUMO

Heme oxygenase 1 (HO-1) is an essential enzyme induced by heme and multiple stimuli associated with critical illness. In humans, polymorphisms in the HMOX1 gene promoter may influence the magnitude of HO-1 expression. In many diseases including murine malaria, HO-1 induction produces protective anti-inflammatory effects, but observations from patients suggest these may be limited to a narrow range of HO-1 induction, prompting us to investigate the role of HO-1 in malaria infection. In 307 Gambian children with either severe or uncomplicated P. falciparum malaria, we characterized the associations of HMOX1 promoter polymorphisms, HMOX1 mRNA inducibility, HO-1 protein levels in leucocytes (flow cytometry), and plasma (ELISA) with disease severity. The (GT)(n) repeat polymorphism in the HMOX1 promoter was associated with HMOX1 mRNA expression in white blood cells in vitro, and with severe disease and death, while high HO-1 levels were associated with severe disease. Neutrophils were the main HO-1-expressing cells in peripheral blood, and HMOX1 mRNA expression was upregulated by heme-moieties of lysed erythrocytes. We provide mechanistic evidence that induction of HMOX1 expression in neutrophils potentiates the respiratory burst, and propose this may be part of the causal pathway explaining the association between short (GT)(n) repeats and increased disease severity in malaria and other critical illnesses. Our findings suggest a genetic predisposition to higher levels of HO-1 is associated with severe illness, and enhances the neutrophil burst leading to oxidative damage of endothelial cells. These add important information to the discussion about possible therapeutic manipulation of HO-1 in critically ill patients.


Assuntos
Expressão Gênica , Predisposição Genética para Doença , Heme Oxigenase-1/genética , Malária Falciparum/sangue , Regiões Promotoras Genéticas , Criança , Pré-Escolar , Feminino , Gâmbia/epidemiologia , Frequência do Gene , Heme Oxigenase-1/sangue , Humanos , Leucócitos/metabolismo , Malária Falciparum/diagnóstico , Malária Falciparum/mortalidade , Masculino , Neutrófilos/metabolismo , Polimorfismo Genético , RNA Mensageiro/metabolismo , Explosão Respiratória , Taxa de Sobrevida
18.
Malar J ; 13: 400, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25311375

RESUMO

Plasmodium falciparum malaria and non-typhoid Salmonella (NTS) bacteraemia are both major causes of morbidity and mortality in children in sub-Saharan Africa. Co-infections are expected to occur because of their overlapping geographical distribution, but accumulating evidence indicates that malaria is a risk factor for NTS bacteraemia. A literature review was undertaken to provide an overview of the evidence available for this association, the epidemiology of malaria-NTS co-infection (including the highest risk groups), the underlying mechanisms, and the clinical consequences of this association, in children in sub-Saharan Africa. The burden of malaria-NTS co-infection is highest in young children (especially those less than three years old). Malaria is one of the risk factors for NTS bacteraemia in children, and the risk is higher with severe malaria, especially severe malarial anaemia. There is insufficient evidence to determine whether asymptomatic parasitaemia is a risk factor for NTS bacteraemia. Many mechanisms have been proposed to explain how malaria causes susceptibility to NTS, ranging from macrophage dysfunction to increased gut permeability, but the most consistent evidence is that malarial haemolysis creates conditions which favour bacterial growth, by increasing iron availability and by impairing neutrophil function. Few discriminatory clinical features have been described for those with malaria and NTS co-infection, except for a higher risk of anaemia compared to those with either infection alone. Children with malaria and NTS bacteraemia co-infection have higher case fatality rates compared to those with malaria alone, and similar to those with bacteraemia alone. Antimicrobial resistance is becoming widespread in invasive NTS serotypes, making empirical treatment problematic, and increasing the need for prevention measures. Observational studies indicate that interventions to reduce malaria transmission might also have a substantial impact on decreasing the incidence of NTS bacteraemia.


Assuntos
Bacteriemia/epidemiologia , Coinfecção/epidemiologia , Malária/epidemiologia , Infecções por Salmonella/epidemiologia , Adolescente , Adulto , África Subsaariana/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
19.
J Immunol ; 189(11): 5336-46, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23100518

RESUMO

It is not known why people are more susceptible to bacterial infections such as nontyphoid Salmonella during and after a malaria infection, but in mice, malarial hemolysis impairs resistance to nontyphoid Salmonella by impairing the neutrophil oxidative burst. This acquired neutrophil dysfunction is a consequence of induction of the cytoprotective, heme-degrading enzyme heme oxygenase-1 (HO-1) in neutrophil progenitors in bone marrow. In this study, we assessed whether neutrophil dysfunction occurs in humans with malaria and how this relates to hemolysis. We evaluated neutrophil function in 58 Gambian children with Plasmodium falciparum malaria [55 (95%) with uncomplicated disease] and examined associations with erythrocyte count, haptoglobin, hemopexin, plasma heme, expression of receptors for heme uptake, and HO-1 induction. Malaria caused the appearance of a dominant population of neutrophils with reduced oxidative burst activity, which gradually normalized over 8 wk of follow-up. The degree of neutrophil impairment correlated significantly with markers of hemolysis and HO-1 induction. HO-1 expression was increased in blood during acute malaria, but at a cellular level HO-1 expression was modulated by changes in surface expression of the haptoglobin receptor (CD163). These findings demonstrate that neutrophil dysfunction occurs in P. falciparum malaria and support the relevance of the mechanistic studies in mice. Furthermore, they suggest the presence of a regulatory pathway to limit HO-1 induction by hemolysis in the context of infection and indicate new targets for therapeutic intervention to abrogate the susceptibility to bacterial infection in the context of hemolysis in humans.


Assuntos
Heme Oxigenase-1/imunologia , Hemólise/imunologia , Malária Falciparum/imunologia , Neutrófilos/imunologia , Infecções por Salmonella/imunologia , Doença Aguda , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Criança , Pré-Escolar , Coinfecção , Contagem de Eritrócitos , Feminino , Expressão Gênica , Haptoglobinas/análise , Heme/análise , Heme Oxigenase-1/genética , Hemopexina/análise , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Neutrófilos/metabolismo , Neutrófilos/patologia , Plasmodium falciparum/imunologia , Receptores de Superfície Celular/sangue , Explosão Respiratória/imunologia , Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA