Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(29): 16180-16189, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31298248

RESUMO

We report on a new strategy to synthesize Al/CuO nanothermites from commercial Al and ultra-small chemically synthesized CuO nanoparticles coated with alkylamine ligands. These usual ligands stabilize the CuO nanoparticles and prevent them from aggregating, with the goal to enhance the interfacial contact between Al and CuO particles. Using a variety of characterization techniques, including microscopy, spectroscopy, mass spectrometry and calorimetry (ATG/DSC), the structural and chemical evolution of CuO nanoparticles stabilized with alkylamine ligands is analyzed upon heating. This enables us to describe the main decomposition processes taking place on the CuO surface at low temperature (<500 °C): the ligands fragment into organic species accompanied with H2O and CO2 release, which promotes CuO reduction into Cu2O and further Cu. We quantitatively discuss these chemical processes highlighting for the first time the crucial importance of the synthesis conditions that control the chemical purity of the organic ligands (octylamine molecules and derivatives such as carbamate and ammonium ions) in the nanothermite performance. From these findings, an effective method to overcome the ligand-induced CuO degradation at low temperature is proposed and the Al/CuO nanothermite reaction is analyzed, in terms of onset temperature and energy released. We produce original structures composed of aluminium nanoparticles embedded in CuO grainy matrices exhibiting an onset temperature ∼200 °C below the usual Al/CuO onset temperatures, having specific combustion profiles depending on the synthesis conditions, while preserving the total amount of energy released.

2.
J Am Chem Soc ; 140(39): 12545-12552, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30196697

RESUMO

Hydrolytically stable adsorbents are needed for water vapor sorption related applications; however, design principles for porous materials with tunable water sorption behavior are not yet established. Here, we report that a platform of fourth-generation metal-organic materials (MOMs) with rigid frameworks and self-switching pores can adapt their pores to modulate water sorption. This platform is based upon the hydrolytically stable material CMOM-3S, which exhibits bnn topology and is composed of rod building blocks based upon S-mandelate ligands, 4,4-bipyridine ligands, and extraframework triflate anions. Isostructural variants of CMOM-3S were prepared using substituted R-mandelate ligands and exhibit diverse water vapor uptakes (20-67 cm3/g) and pore filling pressures ( P/ P0, 0.55-0.75). [Co2( R-4-Cl-man)2(bpy)3](OTf) (33R) is of particular interest because of its unusual isotherm. Insight into the different water sorption properties of the materials studied was gained from analysis of in situ vibrational spectra, which indicate self-switching pores via perturbation of extraframework triflate anions and mandelate linker ligands to generate distinctive water binding sites. Water vapor adsorption was studied using in situ differential spectra that reveal gradual singlet water occupancy followed by aggregation of water clusters in the channels upon increasing pressure. First-principles calculations identified the water binding sites and provide structural insight on how adsorbed water molecules affect the structures and the binding sites. Stronger triflate hydrogen bonding to the framework along with significant charge redistribution were determined for water binding in 33R. This study provides insight into a new class of fourth-generation (self-switching pores) MOM and the resulting effect upon water vapor sorption properties.

3.
J Am Chem Soc ; 140(3): 856-859, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29295618

RESUMO

Coadsorption of multicomponents in metal-organic framework (MOF) materials can lead to a number of cooperative effects, such as modification of adsorption sites or during transport. In this work, we explore the incorporation of NH3 and H2O into MOFs preloaded with small molecules such as CO, CO2, and SO2. We find that NH3 (or H2O) first displaces a certain amount of preadsorbed molecules in the outer portion of MOF crystallites, and then substantially hinders diffusion. Combining in situ spectroscopy with first-principles calculations, we show that hydrogen bonding between NH3 (or H2O) is responsible for an increase of a factor of 7 and 8 in diffusion barrier of CO and CO2 through the MOF channels. Understanding such cooperative effects is important for designing new strategies to enhance adsorption in nanoporous materials.

4.
Langmuir ; 34(5): 1932-1940, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316786

RESUMO

The integration of high-purity nano-objects on substrates remains a great challenge for addressing scaling-up issues in nanotechnology. For instance, grafting gold nanoparticles (NPs) on zinc oxide films, a major step process for catalysis or photovoltaic applications, still remains difficult to master. We report a modified photodeposition (P-D) approach that achieves tight control of the NPs size (7.5 ± 3 nm), shape (spherical), purity, and high areal density (3500 ± 10 NPs/µm2) on ZnO films. This deposition method is also compatible with large ZnO surface areas. Combining electronic microscopy and X-ray photoelectron spectroscopy measurements, we demonstrate that growth occurs primarily in confined spaces (between the grains of the ZnO film), resulting in gold NPs embedded within the ZnO surface grains thus establishing a unique NPs/surface arrangement. This modified P-D process offers a powerful method to control nanoparticle morphology and areal density and to achieve strong Au interaction with the metal oxide substrate. This work also highlights the key role of ZnO surface morphology to control the NPs density and their size distribution. Furthermore, we experimentally demonstrate an increase of the ZnO photocatalytic activity due to high densities of Au NPs, opening applications for the decontamination of water or the photoreduction of water for hydrogen production.

5.
Angew Chem Int Ed Engl ; 55(9): 3027-30, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26822812

RESUMO

With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high-purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal-organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal-organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid-state (29) Si MAS NMR, XPS, SIMS, and HRTEM.

6.
Chemistry ; 21(3): 1169-78, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25394357

RESUMO

The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6-9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface Cu(I) sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re-dissolution of Cu(II) species at the expense of the nanocrystals.


Assuntos
Cobre/química , Aminas/química , Ligantes , Espectroscopia de Ressonância Magnética , Nanopartículas/química , Oxirredução , Ácidos Fosforosos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
7.
Langmuir ; 31(4): 1362-7, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25563697

RESUMO

Low size dispersity silver nanoparticles (ca. 6 nm) have been synthesized by the hydrogenolysis of silver amidinate in the presence of hexadecylamine. Combining NMR techniques with SERS and DFT modeling, it is possible to observe an original stabilization mechanism. Amidine moiety is strongly coordinated to the Ag(0) nanoparticles surface whereas HDA ligand is necessary to prevent agglomeration, although it is only weakly interacting with the surface.

8.
Nat Commun ; 9(1): 1745, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717138

RESUMO

As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

9.
Nat Commun ; 8(1): 485, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883637

RESUMO

Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA