Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 66(1): 89-101.e8, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366643

RESUMO

Histone replacement by transition proteins (TPs) and protamines (Prms) constitutes an essential step for the successful production of functional male gametes, yet nothing is known on the underlying functional interplay between histones, TPs, and Prms. Here, by studying spermatogenesis in the absence of a spermatid-specific histone variant, H2A.L.2, we discover a fundamental mechanism involved in the transformation of nucleosomes into nucleoprotamines. H2A.L.2 is synthesized at the same time as TPs and enables their loading onto the nucleosomes. TPs do not displace histones but rather drive the recruitment and processing of Prms, which are themselves responsible for histone eviction. Altogether, the incorporation of H2A.L.2 initiates and orchestrates a series of successive transitional states that ultimately shift to the fully compacted genome of the mature spermatozoa. Hence, the current view of histone-to-nucleoprotamine transition should be revisited and include an additional step with H2A.L.2 assembly prior to the action of TPs and Prms.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Protaminas/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Genoma , Histonas/deficiência , Histonas/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Nucleossomos/genética , Fenótipo , Espermatogênese/genética , Espermatozoides/patologia , Transfecção
2.
Mol Cell ; 62(2): 169-180, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105113

RESUMO

Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features.


Assuntos
Butiratos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Espermatócitos/metabolismo , Acetilação , Animais , Sítios de Ligação , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Estudo de Associação Genômica Ampla , Histonas/química , Histonas/genética , Lisina , Masculino , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Transcrição Gênica , Ativação Transcricional
3.
Genes Dev ; 27(15): 1680-92, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23884607

RESUMO

The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Protaminas/metabolismo , Animais , Epigênese Genética , Feminino , Fertilização/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Histonas/genética , Masculino , Meiose , Camundongos , Nucleossomos , Espermatogênese/genética , Testículo/metabolismo
4.
EMBO J ; 31(19): 3809-20, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22922464

RESUMO

Male germ cell differentiation is a highly regulated multistep process initiated by the commitment of progenitor cells into meiosis and characterized by major chromatin reorganizations in haploid spermatids. We report here that a single member of the double bromodomain BET factors, Brdt, is a master regulator of both meiotic divisions and post-meiotic genome repackaging. Upon its activation at the onset of meiosis, Brdt drives and determines the developmental timing of a testis-specific gene expression program. In meiotic and post-meiotic cells, Brdt initiates a genuine histone acetylation-guided programming of the genome by activating essential genes and repressing a 'progenitor cells' gene expression program. At post-meiotic stages, a global chromatin hyperacetylation gives the signal for Brdt's first bromodomain to direct the genome-wide replacement of histones by transition proteins. Brdt is therefore a unique and essential regulator of male germ cell differentiation, which, by using various domains in a developmentally controlled manner, first drives a specific spermatogenic gene expression program, and later controls the tight packaging of the male genome.


Assuntos
Proteínas Nucleares/metabolismo , Espermatogênese/fisiologia , Animais , Perfilação da Expressão Gênica , Genoma/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Masculino , Meiose/fisiologia , Camundongos , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo
5.
Nature ; 461(7264): 664-8, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794495

RESUMO

A key step in many chromatin-related processes is the recognition of histone post-translational modifications by effector modules such as bromodomains and chromo-like domains of the Royal family. Whereas effector-mediated recognition of single post-translational modifications is well characterized, how the cell achieves combinatorial readout of histones bearing multiple modifications is poorly understood. One mechanism involves multivalent binding by linked effector modules. For example, the tandem bromodomains of human TATA-binding protein-associated factor-1 (TAF1) bind better to a diacetylated histone H4 tail than to monoacetylated tails, a cooperative effect attributed to each bromodomain engaging one acetyl-lysine mark. Here we report a distinct mechanism of combinatorial readout for the mouse TAF1 homologue Brdt, a testis-specific member of the BET protein family. Brdt associates with hyperacetylated histone H4 (ref. 7) and is implicated in the marked chromatin remodelling that follows histone hyperacetylation during spermiogenesis, the stage of spermatogenesis in which post-meiotic germ cells mature into fully differentiated sperm. Notably, we find that a single bromodomain (BD1) of Brdt is responsible for selectively recognizing histone H4 tails bearing two or more acetylation marks. The crystal structure of BD1 bound to a diacetylated H4 tail shows how two acetyl-lysine residues cooperate to interact with one binding pocket. Structure-based mutagenesis that reduces the selectivity of BD1 towards diacetylated tails destabilizes the association of Brdt with acetylated chromatin in vivo. Structural analysis suggests that other chromatin-associated proteins may be capable of a similar mode of ligand recognition, including yeast Bdf1, human TAF1 and human CBP/p300 (also known as CREBBP and EP300, respectively). Our findings describe a new mechanism for the combinatorial readout of histone modifications in which a single effector module engages two marks on a histone tail as a composite binding epitope.


Assuntos
Histonas/química , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilação , Regulação Alostérica , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Lisina/metabolismo , Camundongos , Modelos Moleculares , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
6.
Cell Rep ; 36(4): 109460, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320364

RESUMO

In addition to acetylation, histones are modified by a series of competing longer-chain acylations. Most of these acylation marks are enriched and co-exist with acetylation on active gene regulatory elements. Their seemingly redundant functions hinder our understanding of histone acylations' specific roles. Here, by using an acute lymphoblastic leukemia (ALL) cell model and blasts from individuals with B-precusor ALL (B-ALL), we demonstrate a role of mitochondrial activity in controlling the histone acylation/acetylation ratio, especially at histone H4 lysine 5 (H4K5). An increase in the ratio of non-acetyl acylations (crotonylation or butyrylation) over acetylation on H4K5 weakens bromodomain containing protein 4 (BRD4) bromodomain-dependent chromatin interaction and enhances BRD4 nuclear mobility and availability for binding transcription start site regions of active genes. Our data suggest that the metabolism-driven control of the histone acetylation/longer-chain acylation(s) ratio could be a common mechanism regulating the bromodomain factors' functional genomic distribution.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Genoma Humano , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Acilação , Linhagem Celular Tumoral , Cromatina/metabolismo , Ácidos Graxos/biossíntese , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Oxirredução , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo
7.
J Am Chem Soc ; 132(29): 9986-7, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20608637

RESUMO

Protein acetylation on Lys residues is recognized as a significant post-translational modification in cells, but it is often difficult to discern the direct structural and functional effects of individual acetylation events. Here we describe a new tool, methylthiocarbonyl-aziridine, to install acetyl-Lys mimics site-specifically into peptides and proteins by alkylation of Cys residues. We demonstrate that the resultant thiocarbamate modification can be recognized by the Brdt bromodomain and site-specific antiacetyl-Lys antibodies, is resistant to histone deacetylase cleavage, and can confer activation of the histone acetyltransferase Rtt109 by simulating autoacetylation. We also use this approach to obtain functional evidence that acetylation of CK2 protein kinase on Lys102 can stimulate its catalytic activity.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Acetilação , Alquilação , Animais , Aziridinas/química , Aziridinas/metabolismo , Sítios de Ligação , Histonas/química , Histonas/metabolismo , Peptídeos/química , Proteínas/química , Especificidade por Substrato
8.
Cells ; 9(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085641

RESUMO

The molecular basis of residual histone retention after the nearly genome-wide histone-to-protamine replacement during late spermatogenesis is a critical and open question. Our previous investigations showed that in postmeiotic male germ cells, the genome-scale incorporation of histone variants TH2B-H2A.L.2 allows a controlled replacement of histones by protamines to occur. Here, we highlight the intrinsic ability of H2A.L.2 to specifically target the pericentric regions of the genome and discuss why pericentric heterochromatin is a privileged site of histone retention in mature spermatozoa. We observed that the intranuclear localization of H2A.L.2 is controlled by its ability to bind RNA, as well as by an interplay between its RNA-binding activity and its tropism for pericentric heterochromatin. We identify the H2A.L.2 RNA-binding domain and demonstrate that in somatic cells, the replacement of H2A.L.2 RNA-binding motif enhances and stabilizes its pericentric localization, while the forced expression of RNA increases its homogenous nuclear distribution. Based on these data, we propose that the specific accumulation of RNA on pericentric regions combined with H2A.L.2 tropism for these regions are responsible for stabilizing H2A.L.2 on these regions in mature spermatozoa. This situation would favor histone retention on pericentric heterochromatin.


Assuntos
Histonas/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Nuclear/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Animais , Núcleo Celular/metabolismo , Genoma Humano , Heterocromatina/metabolismo , Histonas/química , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , Motivos de Ligação ao RNA , Transfecção
9.
Nat Commun ; 7: 13855, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991587

RESUMO

Bromodomains are critical components of many chromatin modifying/remodelling proteins and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2) bromodomain, and that acetylated histone recognition by BD1 is complemented by a bromodomain-DNA interaction. Simultaneous DNA and histone recognition enhances BRDT's nucleosome binding affinity and specificity, and its ability to localize to acetylated chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4, indicates that bivalent nucleosome recognition is a key feature of these bromodomains and possibly others. Our results elucidate the molecular mechanism of BRDT association with nucleosomes and identify structural features of the BET bromodomains that may be targeted for therapeutic inhibition.


Assuntos
Proteínas Nucleares/química , Nucleossomos/química , Acetilação , Sequência de Aminoácidos , Histonas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
10.
J Mol Cell Biol ; 8(4): 349-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26459632

RESUMO

Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells Atad2 becomes critical in sustaining specific gene expression programmes, controlling proliferation and differentiation. Altogether, this work defines Atad2 as a facilitator of general chromatin-templated activities such as transcription.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Acetilação , Diferenciação Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Genoma , Células Germinativas/metabolismo , Humanos , Masculino , Nucleossomos/metabolismo , Ligação Proteica , Proteômica
11.
Cell Rep ; 13(9): 1765-71, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26628361

RESUMO

Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Protaminas/metabolismo , Acetilação , Animais , Núcleo Celular/química , Células Cultivadas , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Masculino , Metilação , Microscopia Eletrônica de Transmissão , Oócitos/metabolismo , Protaminas/genética , Ovinos , Espermátides/química , Espermátides/metabolismo
12.
Antioxid Redox Signal ; 23(1): 1-14, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24512221

RESUMO

AIMS: Ectopic activation of tissue-specific genes accompanies malignant transformation in many cancers. Prolactin (PRL) aberrant activation in lung cancer was investigated here to highlight its value as a biomarker. RESULTS: PRL is ectopically activated in a subset of very aggressive lung tumors, associated with a rapid fatal outcome, in our cohort of 293 lung tumor patients and in an external independent series of patients. Surprisingly PRL receptor expression was not detected in the vast majority of PRL-expressing lung tumors. Additionally, the analysis of the PRL transcripts in lung tumors and cell lines revealed systematic truncations of their 5' regions, including the signal peptide-encoding portions. PRL expression was found to sustain cancer-specific gene expression circuits encompassing genes that are normally responsive to hypoxia. Interestingly, this analysis also indicated that histone deacetylase (HDAC) inhibitors could counteract the PRL-associated transcriptional activity. INNOVATION AND CONCLUSION: Altogether, this work not only unravels a yet unknown oncogenic mechanism but also indicates that the specific category of PRL-expressing aggressive lung cancers could be particularly responsive to an HDAC inhibitor-based treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Prolactina/genética , Adulto , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Inibidores de Histona Desacetilases/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Prognóstico , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Receptores da Prolactina/metabolismo , Transdução de Sinais
13.
Syst Biol Reprod Med ; 57(1-2): 50-3, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21208144

RESUMO

The molecular basis of post-meiotic male genome reorganization and compaction constitutes one of the last black boxes in modern biology. Although the successive transitions in DNA packaging have been well described, the molecular factors driving these near genome-wide reorganizations remain obscure. We have used a combination of different approaches aiming at the discovery of critical factors capable of directing the post-meiotic male genome reprogramming, which is now shedding new light on the nature of the fundamental mechanisms controlling post-meiotic histone replacement and genome compaction. Here we present a summary of these findings. The identification of the first factor capable of reading a precise combination of histone acetylation marks, BRDT, allowed highlighting a critical role for the genome-wide histone hyperacetylation that occurs before generalized histone replacement. In this context, the recent identification of a group of new histone variants capable of forming novel DNA packaging structures on specific regions during late spermatogenesis, when hyperacetylated histones are massively replaced in spermatids, also revealed the occurrence of a post-meiotic region-specific genome reprogramming. Additionally, the functional characterization of other molecular actors and chaperones in action in post-meiotic cells now allows one to describe the first general traits of the mechanisms underlying the structural transitions taking place during the post-meiotic reorganization and epigenetic reprogramming of the male genome.


Assuntos
Genoma/fisiologia , Histonas/metabolismo , Meiose/fisiologia , Acetilação , Animais , Humanos , Masculino , Modelos Biológicos , Proteínas Nucleares/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA