Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 271(4): 745-757, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279143

RESUMO

Advances in neuroimaging have promised the development of specific and objective biomarkers for the diagnosis and treatment of psychiatric disorders. Recently, functional near-infrared spectroscopy (fNIRS) has been used during cognitive tasks to measure cortical dysfunction associated with mental illnesses such as Schizophrenia (SCH), Major-Depressive disorder (MD) and Bipolar Disorder (BD). We investigated the ability of fNIRS as a clinically viable tool to successfully distinguish healthy individuals from those with major psychiatric disorders. 316 patients with major psychiatric disorders (198 SCH/54 MD/64 BP) and 101 healthy controls were included in this study. Changes in oxygenated-hemoglobin during a Chinese language verbal fluency test were measured using a 52-channel fNIRS machine over the bilateral temporal and frontal lobe areas. We evaluated the ability of two task-evoked features selected from prior studies the Integral and Centroid values, to identify individuals with major diagnoses. Both the integral value of frontal and centroid value of temporal showed sensitivity in classifying individuals with mental disorders from healthy controls. However, using a combined index featuring both the integral value and centroid value to differentiate psychiatric disorders from healthy controls with an AUC of 0.913, differentiate individuals with mood disorders from healthy controls showed an AUC of 0.899, while for schizophrenia the AUC was 0.737. Our data suggest that fNIRS can be used as a candidate biomarker during differential diagnosis individuals with mood or psychosis disorders and offer a step towards individualization of treatment.


Assuntos
Transtornos Mentais , China , Transtorno Depressivo Maior , Humanos , Idioma , Transtornos Mentais/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho
2.
Neuroimage ; 198: 73-82, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31078636

RESUMO

Speed of Processing (SoP) represents a fundamental limiting step in cognitive performance which may underlie General Intelligence. The measure of SoP is particularly sensitive to aging, neurological or cognitive diseases, and has become a benchmark for diagnosis, cognitive remediation, and enhancement. Neural efficiency of the Dorsolateral Prefrontal Cortex (DLPFC) is proposed to account for individual differences in SoP. However, the mechanisms by which DLPFC efficiency is shaped by training and whether it can be enhanced remain elusive. To address this, we monitored the brain activity of sixteen healthy participants using functional Near Infrared Spectroscopy (fNIRS) while practicing a common SoP task (Symbol Digit Substitution Task) across 4 sessions. Furthermore, in each session, participants received counterbalanced excitatory repetitive transcranial magnetic stimulation (rTMS) during mid-session breaks. Results indicate a significant involvement of the left-DLPFC in SoP, whose neural efficiency is consistently increased through task practice. Active neurostimulation, but not Sham, significantly enhanced the neural efficiency. These findings suggest a common mechanism by which neurostimulation may aid to accelerate learning.


Assuntos
Cognição/fisiologia , Prática Psicológica , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana , Adulto , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
3.
J Synchrotron Radiat ; 22(4): 895-900, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26134792

RESUMO

The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0-90°), followed by a ϕ stage (0-360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

4.
Neuroimage ; 85 Pt 1: 626-36, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23850462

RESUMO

Endoscopic procedures performed in the United States routinely involve the use of conscious sedation as standard of care. The use of sedation reduces patient discomfort and anxiety while improving the technical quality of the procedure, and as a result, over 98% of clinicians have adopted the practice. The tremendous benefits of sedation are offset by heightened costs, increased patient discharge time, and cardiopulmonary complication risks. The inherent liabilities of putting patients under sedation have necessitated a large number of physiological monitoring systems in order to ensure patient comfort and safety. Currently American Society of Anesthesiologist (ASA) guidelines recommend monitoring of pulse oximetry, blood pressure, heart rate, and end-tidal CO2; although important safeguards, these physiological measurements do not allow for the reliable assessment of patient sedation. Proper monitoring of patient state ensures procedure quality and patient safety; however no "gold-standard" is available to determine the depth of sedation which is comparable to the anesthesiologist's professional judgment. Developments in functional near-infrared spectroscopy (fNIRS) over the past two decades have introduced cost-effective, portable, and non-invasive neuroimaging tools which measure cortical hemodynamic activity as a correlate of neural functions. Anesthetic drugs, such as propofol, operate by suppressing cerebral metabolism. fNIRS imaging methods have the ability to detect these drug related effects as well as neuronal activity through the measurement of local cerebral hemodynamic changes. In the present study, 41 patients were continuously monitored using fNIRS while undergoing outpatient elective colonoscopy with propofol sedation. The preliminary results indicated that oxygenated hemoglobin changes in the dorsolateral prefrontal cortex, as assessed by fNIRS were correlated with changes in response to bolus infusions of propofol, whereas other standard physiological measures were not significantly associated.


Assuntos
Colonoscopia/métodos , Sedação Consciente , Neuroimagem Funcional/métodos , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Dióxido de Carbono/sangue , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Pacientes Ambulatoriais , Adulto Jovem
5.
J Synchrotron Radiat ; 21(Pt 2): 340-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562555

RESUMO

A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group's planned future area detector Eiger 16M.

6.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586053

RESUMO

Understanding aberrant functional changes between brain regions has shown promise for characterizing and differentiating the symptoms associated with progressive psychiatric disorders. The functional integration between the thalamus and cerebellum significantly influences learning and memory in cognition. Observed in schizophrenic patients, dysfunction within the corticalthalamocerebellar (CTC) circuitry is linked to challenges in prioritizing, processing, coordinating, and responding to information. This study explored whether abnormal CTC functional network connectivity patterns are present across schizophrenia (SCHZ) patients, bipolar II disorder (BIPOL) patients, and ADHD patients by examining both task- and task-free conditions compared to healthy volunteers (HC). Leveraging fMRI data from 135 participants (39 HC, 27 SCHZ patients, 38 BIPOL patients, and 31 ADHD patients), we analyzed functional network connectivity (FNC) patterns across 115 cortical, thalamic, subcortical, and cerebellar regions of interest (ROIs). Guiding our investigation: First, do the brain regions of the CTC circuit exhibit distinct abnormal patterns at rest in SCHZ, ADHD, and BIPOL? Second, do working memory tasks in these patients engage common regions of the circuit in similar or unique patterns? Consistent with previous findings, our observations revealed FNC patterns constrained in the cerebellar, thalamic, striatal, hippocampal, medial prefrontal and insular cortices across all three psychiatric cohorts when compared to controls in both task and task-free conditions. Post hoc analysis suggested a predominance in schizophrenia and ADHD patients during rest, while the task condition demonstrated effects across all three disorders. Factor-by-covariance GLM MANOVA further specified regions associated with clinical symptoms and trait assessments. Our study provides evidence suggesting that dysfunctional CTC circuitry in both task-free and task-free conditions may be an important broader neural signature of psychiatric illness.

7.
Front Neuroergon ; 5: 1345507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533517

RESUMO

Introduction: The efficiency and safety of complex high precision human-machine systems such as in aerospace and robotic surgery are closely related to the cognitive readiness, ability to manage workload, and situational awareness of their operators. Accurate assessment of mental workload could help in preventing operator error and allow for pertinent intervention by predicting performance declines that can arise from either work overload or under stimulation. Neuroergonomic approaches based on measures of human body and brain activity collectively can provide sensitive and reliable assessment of human mental workload in complex training and work environments. Methods: In this study, we developed a new six-cognitive-domain task protocol, coupling it with six biomedical monitoring modalities to concurrently capture performance and cognitive workload correlates across a longitudinal multi-day investigation. Utilizing two distinct modalities for each aspect of cardiac activity (ECG and PPG), ocular activity (EOG and eye-tracking), and brain activity (EEG and fNIRS), 23 participants engaged in four sessions over 4 weeks, performing tasks associated with working memory, vigilance, risk assessment, shifting attention, situation awareness, and inhibitory control. Results: The results revealed varying levels of sensitivity to workload within each modality. While certain measures exhibited consistency across tasks, neuroimaging modalities, in particular, unveiled meaningful differences between task conditions and cognitive domains. Discussion: This is the first comprehensive comparison of these six brain-body measures across multiple days and cognitive domains. The findings underscore the potential of wearable brain and body sensing methods for evaluating mental workload. Such comprehensive neuroergonomic assessment can inform development of next generation neuroadaptive interfaces and training approaches for more efficient human-machine interaction and operator skill acquisition.

8.
Brain Sci ; 14(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790481

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting individuals worldwide and characterized by deficits in social interaction along with the presence of restricted interest and repetitive behaviors. Despite decades of behavioral research, little is known about the brain mechanisms that influence social behaviors among children with ASD. This, in part, is due to limitations of traditional imaging techniques specifically targeting pediatric populations. As a portable and scalable optical brain monitoring technology, functional near infrared spectroscopy (fNIRS) provides a measure of cerebral hemodynamics related to sensory, motor, or cognitive function. Here, we utilized fNIRS to investigate the prefrontal cortex (PFC) activity of young children with ASD and with typical development while they watched social and nonsocial video clips. The PFC activity of ASD children was significantly higher for social stimuli at medial PFC, which is implicated in social cognition/processing. Moreover, this activity was also consistently correlated with clinical measures, and higher activation of the same brain area only during social video viewing was associated with more ASD symptoms. This is the first study to implement a neuroergonomics approach to investigate cognitive load in response to realistic, complex, and dynamic audiovisual social stimuli for young children with and without autism. Our results further confirm that new generation of portable fNIRS neuroimaging can be used for ecologically valid measurements of the brain function of toddlers and preschool children with ASD.

9.
Res Sq ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38659778

RESUMO

Background: Challenges with social functioning, which is a hallmark of opioid use disorder (OUD), are a drawback in treatment adherence and maintenance. Yet, little research has explored the underlying mechanisms of this impairment. Impulsivity, a known risk factor for OUD, and corresponding neural alterations may be at the center of this issue. Childhood adversity, which has been linked to both impulsivity and poorer treatment outcomes, could also affect this relationship. This study aims to understand the relationship between impulsivity and social functioning in those recovering from OUD. Differences in the prefrontal cortex will be analyzed, as well as potential moderating effects of childhood trauma. Methods: Participants with (N = 16) and without (N = 19) social impairment completed a survey (e.g., social functioning, Barrat's Impulsivity Scale, Adverse Childhood Experiences (ACEs) and cognitive tasks while undergoing neuroimaging. Functional near infrared spectroscopy (fNIRS), a modern, portable, wearable and low-cost neuroimaging technology, was used to measure prefrontal cortex activity during a behavioral inhibition task (Go/No-Go task). Results: Those who social functioning survey scores indicated social impairment (n = 16) scored significantly higher on impulsivity scale (t(33)= -3.4, p < 0.01) and reported more depressive symptoms (t(33) = -2.8, p < 0.01) than those reporting no social impairment (n = 19). Social functioning was negatively correlated with impulsivity (r=-0.7, p < 0.001), such that increased impulsivity corresponded to decreased social functioning. Childhood trauma emerged as a moderator of this relationship, but only when controlling for the effects of depression, B=-0.11, p = 0.023. Although both groups had comparable Go/No-Go task performance, the socially impaired group displayed greater activation in the dorsolateral (F(1,100.8) = 7.89, p < 0.01), ventrolateral (F(1,88.8) = 7.33, p < 0.01), and ventromedial (F(1,95.6) = 7.56, p < 0.01) prefrontal cortex during impulse control. Conclusion: In addition to being more impulsive, individuals with social impairment exhibited differential activation in the prefrontal cortex when controlling responses. Furthermore, the impact of impulsivity on social functioning varies depending on ACEs demonstrating that it must be considered in treatment approaches. These findings have implications for addressing social needs and impulsivity of those in recovery, highlighting the importance of a more personalized, integrative, and trauma-informed approach to intervention.

10.
Womens Health (Lond) ; 18: 17455057221081326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35225075

RESUMO

OBJECTIVE: Women's experiences of sexual violence can be not only psychologically and physically traumatizing but may also have lasting effects on brain functions, including cognitive control relating to the inhibition and processing of emotion. Thus, the purpose of this pilot study is to explore underlying neural correlates of sexual violence's impact on cognitive control in women. METHODS: Thirty women (aged 21-30 years) participants underwent a quantitative survey along with an affect-congruent Go-NoGo task. Prefrontal activity was monitored using functional near-infrared spectroscopy, a portable neuroimaging technology. An analysis of variance tested for main effects of the condition (Go versus NoGo), group (sexual violence versus no prior sexual violence), and potential interactions. RESULTS: Fifteen of 30 women reported a history of childhood (n = 5) and/or adult (n = 12) sexual violence. Those with sexual violence histories reported significantly higher depression, anxiety, and posttraumatic stress symptoms, as well as increased impulsivity compared to their peers. Behavioral performance did not differ between the groups; however, functional near-infrared spectroscopy data revealed a significant (group × condition) interaction in Optodes 13 and 16. Women with histories of sexual violence had a significantly lower response during the "NoGo" condition and a heightened response during the "Go" condition, in the right dorsolateral prefrontal cortex. CONCLUSION: These results suggest altered prefrontal cortical activity during cognitive processing in women with a history of sexual violence, showing hypoactivity during response inhibition and hyperactivity to the positive stimuli. These findings have strong translational promise for innovative assessment and prevention of untoward effects among women with sexual violence.


Assuntos
Córtex Pré-Frontal , Delitos Sexuais , Adulto , Ansiedade , Cognição , Feminino , Humanos , Masculino , Projetos Piloto , Córtex Pré-Frontal/diagnóstico por imagem
11.
Psychiatry Res Neuroimaging ; 320: 111441, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085957

RESUMO

Recent evidence highlights the role of the cerebellum-cerebral loop in the pathophysiology of schizophrenia (SZ). Electroconvulsive therapy (ECT) is clinically applied to augment the effect of antipsychotic drugs. The study aims to address whether the cerebellum-cerebral loop is involved in the mechanisms of ECT's augmentation effect. Forty-two SZ patients and 23 healthy controls (HC) were recruited and scanned using resting-state functional MRI (rs-fMRI). Twenty-one patients received modified ECT plus antipsychotics (MSZ group), and 21 patients took antipsychotics only (DSZ group). All patients were re-scanned four weeks later. Brain functional network was constructed according to the graph theory. The sub-network exhibited longitudinal changes after ECT or medications were constructed. For the MSZ group, a sub-network involving default-mode network and cerebellum showed significant longitudinal changes. For the DSZ group, a different sub-network involving the thalamus, frontal and occipital cortex was found to be altered in the follow-up scan. In addition, the changing FC of the left cerebellar crus2 region was correlated with the changing scores of the psychotic symptoms only in the MSZ group but not in the DSZ group. In conclusion, the cerebral-cerebellum loop is possibly involved in the antipsychotic mechanisms of ECT for schizophrenia.


Assuntos
Antipsicóticos , Eletroconvulsoterapia , Esquizofrenia , Antipsicóticos/uso terapêutico , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/terapia
12.
Schizophr Res ; 218: 209-218, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31956007

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) has been shown to be effective in schizophrenia (SZ), particularly in drug-refractory cases or when rapid symptom relief is needed. However, its precise mechanisms of action remain largely unclear. To clarify the mechanisms underlying modified electroconvulsive therapy (mECT) for SZ, we conducted a longitudinal cohort study evaluating functional connectivity of the thalamus before and after mECT treatment using sub-regions of thalamus as regions of interest (ROIs). METHODS: Twenty-one SZ individuals taking only antipsychotics (DSZ group) for 4 weeks and 21 SZ patients receiving a regular course of mECT combining with antipsychotics (MSZ group) were observed in parallel. All patients underwent magnetic resonance imaging scans at baseline (t1) and follow-up (t2, ~4 weeks) time points. Data were compared to a matched healthy control group (HC group) consisting of 23 persons who were only scanned at baseline. Group differences in changes of thalamic functional connectivity between two SZ groups over time, as well as in functional connectivity among two SZ groups and HC group were assessed. RESULTS: Significant interaction of group by time was found in functional connectivity of the right thalamus to right putamen during the course of about 4-week treatment. Post-hoc analysis showed a significantly enhanced functional connectivity of the right thalamus to right putamen in the MSZ group contrasting to the DSZ group. In addition, a decreased and an increased functional connectivity of the thalamus to sensory cortex were observed within the MSZ and DSZ group after 4-week treatment trial, respectively. CONCLUSION: Our findings suggest that changes in functional connectivity of the thalamus may be associated with the brain mechanisms of mECT for schizophrenia.


Assuntos
Antipsicóticos , Eletroconvulsoterapia , Esquizofrenia , Antipsicóticos/uso terapêutico , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Vias Neurais , Esquizofrenia/tratamento farmacológico , Esquizofrenia/terapia , Tálamo/diagnóstico por imagem
13.
Front Neurosci ; 13: 84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30872985

RESUMO

Background: The capacity for TMS to elicit neural activity and manipulate cortical excitability has created significant expectation regarding its use in both cognitive and clinical neuroscience. However, the absence of an ability to quantify stimulation effects, particularly outside of the motor cortex, has led clinicians and researchers to pair noninvasive brain stimulation with noninvasive neuroimaging techniques. fNIRS, as an optical and wearable neuroimaging technique, is an ideal candidate for integrated use with TMS. Together, TMS+fNIRS may offer a hybrid alternative to "blind" stimulation to assess NIBS in therapy and research. Objective: In this systematic review, the current body of research into the transient and prolonged effects of TMS on fNIRS-based cortical hemodynamic measures while at rest and during tasks are discussed. Additionally, studies investigating the relation of fNIRS to measures of cortical excitability as produced by TMS-evoked Motor-Evoked-Potential (MEP) are evaluated. The aim of this review is to outline the integrated use of TMS+fNIRS and consolidate findings related to use of fNIRS to monitor changes attributed to TMS and the relationship of fNIRS to cortical excitability itself. Methods: Key terms were searched in PubMed and Web-of-Science to identify studies investigating the use of both fNIRS and TMS. Works from Google-Scholar and referenced works in identified papers were also assessed for relevance. All published experimental studies using both fNIRS and TMS techniques in the study methodology were included. Results: A combined literature search of neuroimaging and neurostimulation studies identified 53 papers detailing the joint use of fNIRS and TMS. 22/53 investigated the immediate effects of TMS at rest in the DLPFC and M1 as measured by fNIRS. 21/22 studies reported a significant effect in [HbO] for 40/54 stimulation conditions with 14 resulting an increase and 26 in a decrease. While 15/22 studies also reported [HbR], only 5/37 conditions were significant. Task effects of fNIRS+TMS were detailed in 16 studies, including 10 with clinical populations. Most studies only reported significant changes in [HbO] related measures. Studies comparing fNIRS to changes in MEP-measured cortical excitability suggest that fNIRS measures may be spatially more diffuse but share similar traits. Conclusion: This review summarizes the progress in the development of this emerging hybrid neuroimaging & neurostimulation methodology and its applications. Despite encouraging progress and novel applications, a lack of replicated works, along with highly disparate methodological approaches, highlight the need for further controlled studies. Interpretation of current research directions, technical challenges of TMS+fNIRS, and recommendations regarding future works are discussed.

14.
Sci Rep ; 9(1): 9575, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270354

RESUMO

Control of attention is thought to be specifically impaired in schizophrenia due to abnormal function in the prefrontal cortex (PFC). The PFC plays a critical role in the identification of relevant stimuli and the development of appropriate biases for the identified signals, including selection of an appropriate attentional 'zoom'. We examined how demands associated with changes in attentional requirements in a Sustained Attention Task (SAT) may contribute to differences in functional involvement of the PFC and relation to clinical status. A group of 24 individuals with schizophrenia and 16 healthy controls (N = 40) performed the SAT and a visuospatial condition (vSAT) while activity in the bilateral anterior PFC was monitored using functional Near Infrared Spectroscopy (fNIRS). The results confirm that the right frontopolar region plays a role in control of attention for both patients and healthy controls. However, patients with schizophrenia exhibited a general attentional deficit and inefficient right-medial PFC activation. Additionally, we observed a strong regional association between left Middle Frontal Gyrus (MFG) activity during the vSAT task and the PANSS score driven by the negative symptom subscale. The presence of aberrant activation differences within the left-MFG region may describe a dysregulation of attentional networks linked to the clinical expression of negative and general symptoms.


Assuntos
Córtex Pré-Frontal/diagnóstico por imagem , Esquizofrenia/diagnóstico , Adulto , Atenção , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Esquizofrenia/patologia , Espectroscopia de Luz Próxima ao Infravermelho
15.
Brain Stimul ; 12(2): 319-328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30473477

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is often considered as an augmentation of antipsychotic treatment for schizophrenia in drug-refractory cases. However, the mechanisms underlying the observed therapeutic effects are still not understood. OBJECTIVE: We aimed to investigate changes in whole brain grey matter volume (GMV) before and after modified ECT. GMV was determined using voxel-based morphometry (VBM) whole brain analysis. Correlations of brain structural changes with clinical improvement were also investigated. METHODS: Twenty-one schizophrenia patients treated with a full course of ECT combined with antipsychotics (ECT group) and 21 schizophrenia patients treated only with antipsychotics (Drug group) were observed in parallel. Magnetic resonance imaging scans were performed at baseline (T1) and follow-up (T2) for each patient. Data were compared to a healthy control group (HC group) of 23 persons who were only scanned at baseline. Demographic data were matched between the three groups. RESULTS: Significant interactions of group by time were found within four brain regions: the left parahippocampal gyrus/hippocampus, right parahippocampal gyrus/hippocampus, right temporal_pole_mid/superior temporal gyrus, and right insula. Post-hoc analysis revealed an increase of GMV across all four regions amongst ECT group, but a decrease of GMV within the Drug group. Furthermore, the ECT group showed a significant positive correlation of GMV change in the right parahippocampal gyrus/hippocampus with a reduction of positive subscore in the positive and negative syndrome scale. Both treatment groups did not differ significantly in terms of GMV from the HC group in these regions either at T1 or at T2. CONCLUSION: Our findings indicate that ECT may induce brain plasticity as indexed by grey matter volume change during the treatment of schizophrenia via distinct mechanics from those by antipsychotic medications. ECT may ameliorate the positive psychotic symptoms of patients suffering from schizophrenia by preferentially targeting limbic brain areas such as the parahippocampal gyrus/hippocampus.


Assuntos
Antipsicóticos/uso terapêutico , Eletroconvulsoterapia/métodos , Substância Cinzenta/fisiopatologia , Plasticidade Neuronal , Esquizofrenia/terapia , Adulto , Antipsicóticos/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esquizofrenia/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-29705712

RESUMO

Abnormal auditory steady state response (ASSR) is a typical finding among schizophrenia patients, which is thought to directly reflect deficient gamma band oscillations in the brain. However, whether these ASSR alterations are state dependent, e.g. during eye-open or eye-closed conditions, has not yet been carefully elucidated in schizophrenia. Our study aimed to explore whether the abnormality of ASSR in patients with first-episode schizophrenia (FEP) is altered under eye-open (EO) and eye-closed (EC) states. ASSR was elicited using 40 Hz click trains under EO and EC states. Twenty-eight healthy control subjects (HC) and thirty-three FEP individuals, 17 of whom were medication-naïve, were recruited. The event-related spectrum perturbation (ERSP) and intertrial coherence (ITC) in response to 40 Hz click sounds were quantified. Compared to HC group, FEP group showed a lower ITC and ERSP during EO state, as well as a decreased ITC during EC state. Our results suggest that abnormalities in gamma band oscillations among first-episode schizophrenia patients are present under both eye open and eye close states. Although differences in gamma band oscillations between EO and EC states within the FEP group were not observed, exploratory results suggest that state-sensitivity may be contingent on medication use.


Assuntos
Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos , Ritmo Gama , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia , Percepção Visual/fisiologia , Estimulação Acústica , Doença Aguda , Adulto , Feminino , Humanos , Masculino , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Adulto Jovem
17.
Schizophr Res ; 197: 192-199, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117910

RESUMO

Modified electroconvulsive therapy (MECT) has been widely applied to help treat schizophrenia patients who are treatment-resistant to pharmaceutical therapy. Although the technique is increasingly prevalent, the underlying neural mechanisms have not been well clarified. We conducted a longitudinal study to investigate the alteration of global functional connectivity density (gFCD) in schizophrenia patients undergoing MECT using resting state fMRI (functional magnetic resonance imaging). Two groups of schizophrenia inpatients were recruited. One group received a four-week MECT together with antipsychotic drugs (ECT+Drug, n=21); the other group only received antipsychotic drugs (Drug, n=21). Both groups were compared to a sample of healthy controls (HC, n=23). fMRI scans were obtained from the schizophrenia patients twice at baseline (t1) and after 4-week treatment (t2), and from healthy controls at baseline. gFCD was computed using resting state fMRI. Repeated ANCOVA showed a significant interaction effect of group×time in the schizophrenia patients in left precuneus (Pcu), ventral medial prefrontal cortex (vMPFC), and dorsal medial prefrontal cortex (dMPFC) (GRF-corrected P<0.05), which are mainly located within the default mode network (DMN). Post-hoc analysis revealed that compared with baseline (t1), an increased gFCD was found in the ECT+Drug group in the dMPFC (t=3.87, p=0.00095), vMPFC (t=3.95, p=0.00079) and left Pcu (t=3.33, p=0.0034), but no significant effect was identified in the Drug group. The results suggested that increased global functional connectivity density within the DMN might be one important neural mechanism of MECT in schizophrenia.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma/métodos , Eletroconvulsoterapia/métodos , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Esquizofrenia/terapia , Adulto , Antipsicóticos/uso terapêutico , Córtex Cerebral/diagnóstico por imagem , Terapia Combinada , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Resultado do Tratamento
18.
Neurophotonics ; 4(4): 041405, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840157

RESUMO

Transcranial magnetic stimulation (TMS) is a noninvasive method used to excite or inhibit cortical activity for experimental, diagnostic, and therapeutic interventions. However, nonmotor regions of the brain targeted in TMS therapies, such as the dorsolateral prefrontal cortex (DLPFC), offer no extrinsic response to stimulation, resulting in a need for a practical method for the evaluation of treatment. We sought to determine the capability of a continuous-wave light emitting diodes (LED)-based functional near-infrared spectroscopy (fNIRS) system to measure evoked cortical hemoglobin changes in the DLPFC during the simultaneous application of TMS to the left-DLPFC under brief stimulation paradigms used in the clinic. Seventeen healthy participants received short TMS trains at F3 in four different stimulation conditions (single pulse, high frequency, intermittent theta burst, and sham) while adjacent fNIRS measurements were recorded. Ten 2-s trains of each stimulation type were delivered with an intertrial interval of 40 s. Results indicated that high-frequency stimulation produces a larger and more evident response than other measured conditions. These findings show that a continuous-wave LED-based fNIRS system can be used to measure TMS-evoked responses and that future TMS applications can benefit from concurrent assessment of localized cortical activation changes.

20.
Artigo em Inglês | MEDLINE | ID: mdl-23366766

RESUMO

In this study, a Brain Computer Interface (BCI) based on the P300 oddball paradigm has been developed for spatial navigation control in virtual environments. Functionality and efficacy of the system were analyzed with results from nine healthy volunteers. Each participant was asked to gaze at an individual target in a 3×3 P300 matrix containing different symbolic navigational icons while EEG signals were collected. Resulting ERPs were processed online and classification commands were executed to control spatial movements within the MazeSuite virtual environment and presented to the user online during an experiment. Subjects demonstrated on average, ∼89% online accuracy for simple mazes and ∼82% online accuracy in longer more complex mazes. Results suggest that this BCI setup enables guided free-form navigation in virtual 3D environments.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Orientação/fisiologia , Interface Usuário-Computador , Feminino , Humanos , Masculino , Estimulação Luminosa , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA