RESUMO
Effects of age on the pulmonary vascular responses to histamine (HIST), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and KCl were studied in isolated, perfused lungs from juvenile (7-wk-old), adult (14-wk-old), and mature adult (28-wk-old) normoxic rats and compared with age-matched rats exposed to chronic hypoxia for either 14 or 28 days. Chronic hypoxia changed vasoconstriction to HIST and NE to vasodilation in lungs from juvenile and adult rats. Mature adult lungs only vasoconstricted to these amines in both control and hypoxic animals. Pressor responses to 5-HT were not affected by chronic hypoxia regardless of age group. Pressor responses to KCl were also not altered by hypoxia, but lungs from older rats showed greater control responsiveness to KCl compared with lungs from juveniles. Only lungs from juvenile animals developed significant elevations of base-line resistance as a result of hypoxic exposure. To investigate the contribution of H1-, H2-, and beta-receptors in these changes, we employed chlorpheniramine, metiamide, and propranolol, respectively, as blocking agents in another series of experiments. Chlorpheniramine either reduced vasoconstriction or increased vasodilation to HIST in lungs from both control and hypoxic animals, whereas metiamide was without effect. Propranolol either increased vasoconstriction or reversed vasodilation to HIST and NE in all lungs studied. The present data demonstrate the important interaction between chronic hypoxia and age that can alter pulmonary vascular tone and reactivity. The inverse relationship between age and elevation of pulmonary vascular resistance after chronic hypoxic exposure may be the key element that changes pulmonary vascular reactivity observed during hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)
Assuntos
Hipóxia/fisiopatologia , Pulmão/crescimento & desenvolvimento , Circulação Pulmonar , Resistência Vascular , Envelhecimento , Animais , Peso Corporal/efeitos dos fármacos , Hematócrito , Histamina/farmacologia , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Norepinefrina/farmacologia , Cloreto de Potássio/farmacologia , Circulação Pulmonar/efeitos dos fármacos , Ratos , Ratos Endogâmicos , Serotonina/farmacologia , Resistência Vascular/efeitos dos fármacosRESUMO
The effects of acute hypoxia on the pressor responses to five biogenic amines were studied in isolated blood-perfused cat lungs. Hypoxia (Po2 = 46 +/- 2 Torr) reduced the pressor responses to phenylephrine while changing the pressor responses to epinephrine and norepinephrine to vasodilation. Hypoxia reduced the pressor responses to histamine, and these reductions were preceded by small but significant vasodilations. Hypoxia had no effect on the pressor responses to serotonin. These changes in pulmonary vasoactivity were reversed on reoxygenation, independent of changes in base-line tone and not correlated with circulating catecholamines. We also examined the effects of hypoxia on the pressor responses to norepinephrine during beta-blockade with propranolol and then alpha-blockade with dibenzyline. The vasodilation produced during hypoxia by norepinephrine was blocked by propranolol, and vasoconstriction reappeared. When alpha-blockade was then established, vasodilation to norepinephrine reemerged during hypoxia. These results demonstrate that hypoxia produces changes in pulmonary vascular responsiveness that are acute in nature and reversible. Although the cellular nature of these changes is unknown, the data suggest that hypoxia produces acute shifts in antagonistic adrenergic receptor activity by either 1) reducing alpha- or increasing beta-receptor activity or 2) acutely changing adrenergic receptor conformation, affinity, or efficacy, such that beta-activity prevails.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Epinefrina/farmacologia , Hipóxia/fisiopatologia , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Circulação Pulmonar/efeitos dos fármacos , Animais , Benzilaminas/farmacologia , Gatos , Receptores Adrenérgicos alfa/efeitos dos fármacos , Receptores Adrenérgicos beta/efeitos dos fármacos , Valores de ReferênciaRESUMO
Little is known about the effects of prolonged hypoxic exposure on membrane ion transport activity. The Na+/H+ antiport is an ion transport site that regulates intracellular pH in mammalian cells. We determined the effect of prolonged hypoxic exposure on human pulmonary arterial endothelial cell antiport activity, gene expression, and localization. Monolayers were incubated under hypoxic or normoxic conditions for 72 h. Antiport activity was determined as the rate of recovery from intracellular acidosis. Antiport isoform identification and gene expression were determined with RT-PCR and Northern and Western blots. Antiport localization and F-actin cytoskeleton organization were defined with immunofluorescent staining. Prolonged hypoxic exposure decreased antiport activity, with no change in cell viability compared with normoxic control cells. One antiport isoform [Na+/H+ exchanger isoform (NHE) 1] that was localized to the basolateral cell surface was present in human pulmonary arterial endothelial cells. Hypoxic exposure had no effect on NHE1 mRNA transcript expression, but NHE1 protein expression was upregulated. Immunofluorescent staining demonstrated a significant alteration of the F-actin cytoskeleton after hypoxic exposure but no change in NHE1 localization. These results demonstrate that the decrease in NHE1 activity after prolonged hypoxic exposure is not related to altered gene expression. The change in NHE1 activity may have important consequences for vascular function.
Assuntos
Hipóxia Celular/fisiologia , Endotélio Vascular/fisiologia , Regulação da Expressão Gênica , Trocadores de Sódio-Hidrogênio/genética , Aerobiose , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Cinética , Reação em Cadeia da Polimerase , Artéria Pulmonar , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/biossíntese , Fatores de Tempo , Transcrição GênicaRESUMO
Oxidant injury to pulmonary vascular endothelium is an important factor in the pathogenesis of acute lung injury. Oxidant injury to other cell types has been reported to alter the function of Na-K-adenosinetriphophatase (ATPase) an enzyme important in maintenance of cellular ionic homeostasis and in transport of ions across biological membranes. We investigated the effect of H2O2 (0.001-10 mM) or xanthine (X) (15.2 micrograms/ml) plus xanthine oxidase (XO) (0.0153 U/ml) on the Na-K pump activity of cultured bovine pulmonary arterial endothelial cells (PAECs). We used a functional assay, using 86RbCl as a tracer for K+ and expressing Na-K pump activity as ouabain-inhibitable K+ uptake. Our results demonstrate that H2O2 and X/XO stimulate Na-K pump activity of bovine PAECs, an effect prevented by catalase. In addition, we assessed the affinity, number, and turnover of [3H]ouabain binding sites on intact endothelial monolayers and found that H2O2 increased affinity to [3H]ouabain, decreased the number of binding sites, and increased the rate of pump turnover. Influx of 22Na increased in response to a nonlytic concentration of H2O2. Cell injury, as assessed by 51Cr release, adherent cell number, and phase-microscopic morphology, was not observed after 30-min incubations with the lowest dose (1 mM) of H2O2 effective in stimulating Na-K pump activity, or after incubation with X/XO. Na-K pump inhibition by ouabain significantly increased the 51Cr release caused by H2O2 or by X/XO, suggesting that the increase in Na-K pump activity may be a compensatory response to the cellular alterations produced by H2O2. Incubation with H2O2 decreased cell ATP content, an effect which was not prevented by coincubation with ouabain. In summary, these results show that H2O2 increases Na-K pump activity of PAECs, an effect mediated, at least in part, by increased intracellular [Na] and by an increased rate of pump turnover. It is possible that the increased pump activity may be an early marker of endothelial cell perturbation.
Assuntos
Endotélio Vascular/enzimologia , Peróxido de Hidrogênio/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Cinética , Ouabaína/metabolismo , Ligação Proteica , Artéria Pulmonar , Rubídio/metabolismoRESUMO
Apoptosis may be important in the exacerbation of endothelial cell injury or limitation of endothelial cell proliferation. We have found that extracellular ATP (exATP) and adenosine cause endothelial apoptosis and that the development of apoptosis is linked to intracellular metabolism of adenosine [Dawicki, D. D., D. Chatterjee, J. Wyche, and S. Rounds. Am. J. Physiol. 273 (Lung Cell Mol. Physiol. 17): L485-L494, 1997]. In the present study, we investigated the mechanism of this effect. We found that exATP, adenosine, and the S-adenosyl-L-homocysteine (SAH) hydrolase inhibitor MDL-28842 caused apoptosis and decreased the ratio of S-adenosyl-L-methionine to SAH compared with untreated control cells. Using release of soluble [3H]thymidine as a measure of DNA fragmentation, we found that the effect of adenosine on soluble DNA release was potentiated by coincubation with homocysteine. These results suggest that the mechanism of exATP- and adenosine-induced endothelial cell apoptosis involves inhibition of SAH hydrolase. exATP-induced apoptosis was enhanced by an inhibitor of adenosine deaminase, whereas exogenous adenosine-induced apoptosis was partially inhibited by an adenosine deaminase inhibitor. These results suggest that adenosine deaminase may also be involved in the mechanism of adenosine-induced endothelial cell apoptosis. Adenosine and MDL-28842 caused intracellular acidosis as assessed with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. The cell-permeant base chloroquine prevented adenosine-induced acidosis but not apoptosis. Thus, although intracellular acidosis is associated with adenosine-induced apoptosis, it is not necessary for this effect. We speculate that exATP- and adenosine-induced endothelial cell apoptosis may be due to an inhibition of methyltransferase(s) activity. Purine-induced endothelial cell apoptosis may be important in limiting endothelial cell proliferation after vascular injury.