Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(29): 12690-12698, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32579347

RESUMO

Analogues of the conformationally dynamic Claritin (loratadine) and Clarinex (desloratadine) scaffolds have been enantio- and chemoselectively N-oxidized using an aspartic acid containing peptide catalyst to afford stable, helically chiral products in up to >99:1 er. The conformational dynamics and enantiomeric stability of the N-oxide products have been investigated experimentally and computationally with the aid of crystallographic data. Furthermore, biological assays show that rigidifying the core structure of loratadine and related analogues through N-oxidation affects antihistamine activity in an enantiomer-dependent fashion. Computational docking studies illustrate the observed activity differences.


Assuntos
Ácido Aspártico/química , Antagonistas dos Receptores Histamínicos/farmacologia , Loratadina/farmacologia , Peptídeos/química , Receptores Histamínicos/metabolismo , Catálise , Antagonistas dos Receptores Histamínicos/síntese química , Antagonistas dos Receptores Histamínicos/química , Humanos , Loratadina/análogos & derivados , Loratadina/química , Conformação Molecular , Simulação de Acoplamento Molecular , Estereoisomerismo
2.
J Chem Inf Model ; 60(9): 4403-4415, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32383599

RESUMO

With standard scoring methods, top-ranked compounds from virtual screening by docking often turn out to be inactive. For this reason, metadynamics, a method used to sample rare events, was studied to further evaluate docking poses with the aim of reducing false positives. Specifically, virtual screening was performed with Glide SP to seek potential molecules to bind to the ATP site in the pseudokinase domain of JAK2 kinase, and promising compounds were selected from the top-ranked 1000 based on visualization. Rescoring with Glide XP, GOLD, and MM/GBSA was unable to differentiate well between active and inactive compounds. Metadynamics was then used to gauge the relative binding affinity from the required time or the potential of mean force needed to dissociate the ligand from the bound complex. With consideration of previously known binders of varying affinities, metadynamics was able to differentiate between the most active compounds and inactive or weakly active ones, and it could identify correctly most of the selected virtual screening compounds as false positives. Thus, metadynamics has the potential to be a viable postprocessing method for virtual screening, minimizing the expense of buying or synthesizing inactive compounds.


Assuntos
Projetos de Pesquisa , Sítios de Ligação , Ligantes , Ligação Proteica
3.
ACS Med Chem Lett ; 13(5): 819-826, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35586418

RESUMO

The Janus kinase 2 (JAK2) pseudokinase domain (JH2) is an ATP-binding domain that regulates the activity of the catalytic tyrosine kinase domain (JH1). Dysregulation of JAK2 JH1 signaling caused by the V617F mutation in JH2 is implicated in various myeloproliferative neoplasms. To explore if JAK2 activity can be modulated by a small molecule binding to the ATP site in JH2, we have developed several ligand series aimed at selectively targeting the JAK2 JH2 domain. We report here the evolution of a false virtual screen hit into a new JAK2 JH2 series. Optimization guided by computational modeling has yielded analogues with nanomolar affinity for the JAK2 JH2 domain and >100-fold selectivity for the JH2 domain over the JH1 domain. A crystal structure for one of the potent compounds bound to JAK2 JH2 clarifies the origins of the strong binding and selectivity. The compounds expand the platform for seeking molecules to regulate JAK2 signaling, including V617F JAK2 hyperactivation.

4.
J Med Chem ; 65(12): 8380-8400, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35653642

RESUMO

JAK2 is a non-receptor tyrosine kinase that regulates hematopoiesis through the JAK-STAT pathway. The pseudokinase domain (JH2) is an important regulator of the activity of the kinase domain (JH1). V617F mutation in JH2 has been associated with the pathogenesis of various myeloproliferative neoplasms, but JAK2 JH2 has been poorly explored as a pharmacological target. In light of this, we aimed to develop JAK2 JH2 binders that could selectively target JH2 over JH1 and test their capacity to modulate JAK2 activity in cells. Toward this goal, we optimized a diaminotriazole lead compound into potent, selective, and cell-permeable JH2 binders leveraging computational design, synthesis, binding affinity measurements for the JH1, JH2 WT, and JH2 V617F domains, permeability measurements, crystallography, and cell assays. Optimized diaminotriazoles are capable of inhibiting STAT5 phosphorylation in both WT and V617F JAK2 in cells.


Assuntos
Janus Quinases , Transtornos Mieloproliferativos , Humanos , Janus Quinase 2/metabolismo , Janus Quinases/metabolismo , Ligantes , Mutação , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
5.
ACS Med Chem Lett ; 12(2): 249-255, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33603971

RESUMO

Covalent inhibitors of wild-type HIV-1 reverse transcriptase (CRTIs) are reported. Three compounds derived from catechol diether non-nucleoside inhibitors (NNRTIs) with addition of a fluorosulfate warhead are demonstrated to covalently modify Tyr181 of HIV-RT. X-ray crystal structures for complexes of the CRTIs with the enzyme are provided, which fully demonstrate the covalent attachment, and confirmation is provided by appropriate mass shifts in ESI-TOF mass spectra. The three CRTIs and six noncovalent analogues are found to be potent inhibitors with both IC50 values for in vitro inhibition of WT RT and EC50 values for cytopathic protection of HIV-1-infected human T-cells in the 5-320 nM range.

6.
J Med Chem ; 63(10): 5324-5340, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32329617

RESUMO

Janus kinases (JAKs) are non-receptor tyrosine kinases that are essential components of the JAK-STAT signaling pathway. Associated aberrant signaling is responsible for many forms of cancer and disorders of the immune system. The present focus is on the discovery of molecules that may regulate the activity of JAK2 by selective binding to the JAK2 pseudokinase domain, JH2. Specifically, the Val617Phe mutation in JH2 stimulates the activity of the adjacent kinase domain (JH1) resulting in myeloproliferative disorders. Starting from a non-selective screening hit, we have achieved the goal of discovering molecules that preferentially bind to the ATP binding site in JH2 instead of JH1. We report the design and synthesis of the compounds and binding results for the JH1, JH2, and JH2 V617F domains, as well as five crystal structures for JH2 complexes. Testing with a selective and non-selective JH2 binder on the autophosphorylation of wild-type and V617F JAK2 is also contrasted.


Assuntos
Amitrol (Herbicida)/química , Amitrol (Herbicida)/metabolismo , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Animais , Células HEK293 , Humanos , Ligantes , Ligação Proteica/fisiologia , Células Sf9 , Difração de Raios X/métodos
7.
FEBS Lett ; 591(5): 706-717, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28130840

RESUMO

While many antimicrobial peptides (AMPs) disrupt bacterial membranes, some translocate into bacteria and interfere with intracellular processes. Buforin II and DesHDAP1 are thought to kill bacteria by interacting with nucleic acids. Here, molecular modeling and experimental measurements are used to show that neither nucleic acid binding peptide selectively binds DNA sequences. Simulations and experiments also show that changing lysines to arginines enhances DNA binding, suggesting that including additional guanidinium groups is a potential strategy to engineer more potent AMPs. Moreover, the lack of binding specificity may make it more difficult for bacteria to evolve resistance to these and other similar AMPs.


Assuntos
Antibacterianos/química , Arginina/química , DNA Bacteriano/química , Histonas/química , Lisina/química , Proteínas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antibacterianos/síntese química , Antibacterianos/isolamento & purificação , Anuros/fisiologia , Histonas/síntese química , Histonas/isolamento & purificação , Cinética , Simulação de Dinâmica Molecular , Mimetismo Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/síntese química , Proteínas/isolamento & purificação , Relação Estrutura-Atividade , Termodinâmica
8.
ACS Med Chem Lett ; 8(6): 614-617, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626520

RESUMO

A competitive fluorescence polarization (FP) assay is reported for determining binding affinities of probe molecules with the pseudokinase JAK2 JH2 allosteric site. The syntheses of the fluorescent 5 and 6 used in the assay are reported as well as Kd results for 10 compounds, including JNJ7706621, NVP-BSK805, and filgotinib (GLPG0634). X-ray crystal structures of JAK2 JH2 in complex with NVP-BSK805, filgotinib, and diaminopyrimidine 8 elucidate the binding poses.

9.
J Chem Theory Comput ; 11(9): 4273-82, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575922

RESUMO

Partial atomic charges for neutral molecules from quantum mechanical calculations are typically scaled for use in molecular modeling of liquid-phase systems. Optimal scale factors of 1.14 for CM1A and 1.27 for CM5 charges were previously determined for minimizing errors in free energies of hydration. The adequacy of the 1.14*CM1A and 1.27*CM5 models are evaluated here in pure liquid simulations in combination with the OPLS-AA force field. For 22 organic liquids, the 1.14*CM1A and 1.27*CM5 models yield mean unsigned errors (MUEs) of ca. 1.40 kcal/mol for heats of vaporization. Not surprisingly, this reflects overpolarization with the scale factors derived for aqueous media. Prediction of pure liquid properties using CM5 charges is optimized using a scale factor of 1.14, which reduces the MUE for heats of vaporization to 0.89 kcal/mol. However, due to the impracticality of using different scale factors in different explicit-solvent condensed-phase simulations, a universal scale factor of 1.20 emerged for CM5 charges. This provides a balance between errors in computed pure liquid properties and free energies of hydration. Computation of free energies of hydration by the GB/SA method further found that 1.20 is equally suited for use in explicit or implicit treatments of aqueous solvation. With 1.20*CM5 charges, a variety of condensed-phase simulations can be pursued while maintaining average errors of 1.0 kcal/mol in key thermodynamic properties.


Assuntos
Teoria Quântica , Modelos Moleculares , Termodinâmica
10.
FEBS Lett ; 589(24 Pt B): 3915-20, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26555191

RESUMO

Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides-buforin II, DesHDAP1, and parasin-with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina , Histonas/química , Lisina , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dados de Sequência Molecular , Mutação , Transporte Proteico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA