Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Chem Soc Rev ; 52(10): 3567-3590, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37161868

RESUMO

Recently, there has been significant interest in the use of chiral metal-organic frameworks (MOFs) and coordination polymers (CPs) for photonics applications. The promise of these materials lies in the ability to tune their properties through judicious selection of the metal and ligand components. Additionally, the interaction of guest species with the host framework can be exploited to realise new functionalities. In this review, we outline the methods for synthesising chiral MOFs and CPs, then analyse the recent innovations in their use for various optical and photonics applications. We focus on two emerging directions in the field of MOF chemistry - circularly polarised luminescence (CPL) and chiroptical switching - as well as the latest developments in the use of these materials for second-order nonlinear optics (NLO), particularly second-harmonic generation (SHG). The current challenges encountered so far, their possible solutions, and key directions for further research are also outlined. Overall, given the results demonstrated to date, chiral MOFs and CPs show great promise for use in future technologies such as optical communication and computing, optical displays, and all-optical devices.

2.
J Am Chem Soc ; 145(1): 689-696, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574726

RESUMO

Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by n-doping naphthalene diimide subunits with varying amounts of CoCp2 and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy. Low spin densities (e.g., 6.0 × 1012 spins mm-3) enable lengthy spin-lattice (T1) and spin-spin relaxation (T2) times across a range of temperatures, ranging from T1 values of 164 ms at 10 K to 30.2 µs at 296 K and T2 values of 2.36 µs at 10 K to 0.49 µs at 296 K for the lowest spin density sample examined. Higher spin densities and temperatures were both found to diminish T1 times, which we attribute to detrimental cross-relaxation from spin-spin dipolar interactions and spin-phonon coupling, respectively. Higher spin densities decreased T2 times and modulated the T2 temperature dependence. We attribute these differences to the competition between hyperfine and dipolar interactions for electron spin decoherence, with the dominant interaction transitioning from the former to the latter as spin density and temperature increase. Overall, this investigation demonstrates that dispersing electronic spin qubits within layered 2DPs enables chemical control of their inter-qubit interactions and spin decoherence times.

3.
J Am Chem Soc ; 144(29): 13242-13253, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35830247

RESUMO

The two-dimensional (2-D) framework, [Cu(BTDAT)(MeOH)] {BTDAT = bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane}, possesses remarkable multi-step redox properties, with electrochemical studies revealing six quasi-stable redox states in the solid state. In situ electron paramagnetic resonance and visible-near infrared spectroelectrochemistry elucidated the mechanism for these multi-step redox processes, as well as the optical and electrochromic behavior of the BTDAT ligand and framework. In studying the structural, spectroscopic, and electronic properties of [Cu(BTDAT)(MeOH)], the as-synthesized framework was found to exist in a mixed-valence state with thermally-activated semiconducting behavior. In addition to pressed pellet conductivity measurements, single-crystal conductivity measurements using a pre-patterned polydimethylsiloxane layer on a silicon substrate provide important insights into the anisotropic conduction pathways. As an avenue to further understand the electronic state of [Cu(BTDAT)(MeOH)], computational band structure calculations predicted delocalized electronic transport in the framework. On the balance of probabilities, we propose that [Cu(BTDAT)(MeOH)] is a Mott insulator (i.e., electron correlations cause a metal-insulator transition). This implies that the conductivity is incoherent. However, we are unable to distinguish between activated transport due to Coulombically bound electron-hole pairs and a hopping mechanism. The combined electrochemical, electronic, and optical properties of [Cu(BTDAT)(MeOH)] shine a new light on the experimental and theoretical challenges for electroactive framework materials, which are implicated as the basis of advanced optoelectronic and electrochromic devices.

4.
Chemistry ; 27(2): 622-627, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33191540

RESUMO

Using the redox-active tetrathiafulvalene tetrabenzoate (TTFTB4- ) as the linker, a series of stable and porous rare-earth metal-organic frameworks (RE-MOFs), [RE9 (µ3 -OH)13 (µ3 -O)(H2 O)9 (TTFTB)3 ] (1-RE, where RE=Y, Sm, Gd, Tb, Dy, Ho, and Er) were constructed. The RE9 (µ3 -OH)13 (µ3 -O) (H2 O)9 ](CO2 )12 clusters within 1-RE act as segregated single-molecule magnets (SMMs) displaying slow relaxation. Interestingly, upon oxidation by I2 , the S=0 TTFTB4- linkers of 1-RE were converted into S= 1 / 2 TTFTB.3- radical linkers which introduced exchange-coupling between SMMs and modulated the relaxation. Furthermore, the SMM property can be restored by reduction in N,N-dimethylformamide. These results highlight the advantage of MOFs in the construction of redox-switchable SMMs.

5.
Faraday Discuss ; 231(0): 152-167, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34251000

RESUMO

Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained.

6.
Inorg Chem ; 60(16): 11706-11710, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33745281

RESUMO

The incorporation of photoactive donor-acceptor Stenhouse adduct (DASA) moieties into Metal-Organic Frameworks (MOFs) provides a new route to the development of visible light switching materials. Herein, a DUT-5 mixed-linker defect series was exploited to produce a derivative group of DASA-modified materials via postsynthetic modification (PSM). The photoactive MOFs exhibited conversion stimulated by visible wavelengths and were stable following multiple cycles. Thermodynamic and metastable states persisted over an extended time period.

7.
Inorg Chem ; 60(17): 13658-13668, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428031

RESUMO

A remarkably flexible, multifunctional, 2D coordination polymer exhibiting an unprecedented mode of reversible mechanical motion, enabling pores to open and close, is reported. Such multifunctional materials are highly sought after, owing to the potential to exploit coexisting electronic and mechanical functionalities that underpin useful technological applications such as actuators and ultrasensitive detectors. The coordination polymer, of composition Mn(F4TCNQ)(py)2 (F4TCNQ = 2,3,5,6-tetrafluoro-7,7,8,8-tetracycanoquinodimethane; py = pyridine), consists of Mn(II) centers bridged by F4TCNQ dianions and coordinated by py molecules that extend above and below the 2D network. Exposure of Mn(F4TCNQ)(py)2, in its collapsed state, to carbon dioxide results in a pore-opening process at a threshold pressure for a given temperature. In addition to carbon dioxide, a variety of volatile guests may be incorporated into the pores, which are lined with electron-rich F4TCNQ dianions. The inclusion of electron-deficient guests such as 1,4-benzoquinone, nitrobenzene, maleic anhydride, and iodine into the pores is accompanied by a striking color change associated with a new host-guest charge-transfer interaction and an improvement in the semiconductor behavior, with the iodine adduct showing an increase in conductivity of almost 5 orders of magnitude. Experimental and density functional theory calculations on this remarkable multifunctional material demonstrate a reduction in the optical band gap with increasing electron affinity of the guest.

8.
Angew Chem Int Ed Engl ; 60(9): 4789-4795, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33236501

RESUMO

A series of stable radical 2D metal-organic frameworks has been assembled. (m-TTFTB)3 (m-Tetrathiafulvalene-tetrabenzoate) trimer building blocks are beneficial for the stability of the radicals due to delocalization of the unpaired electron. Hexanuclear rare-earth-cluster-based 1D chains further enhance the stability of the frameworks. The radical state of the middle TTF in the trimer has been observed by the change of central C-C and C-S bond distances and the configuration of the TTF by single-crystal X-ray diffraction. The radical characteristics are also confirmed by electron paramagnetic resonance, UV/Vis-NIR absorption, and X-ray photoelectron spectroscopy experiments. Stability tests showed that the radicals are stable even in solutions and under acid/base environments (pH 1-12). Owing to efficient light absorption due to intramolecular charge transfer, low thermal conductivity, and outstanding stability, the radical 2D Dy-MOF shows excellent photothermal properties, an increase of 34.7 °C within 240 s under one-sun illumination.

9.
J Am Chem Soc ; 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185447

RESUMO

Functionalizing the redox-active tetrathiafulvalene (TTF) core with groups capable of coordination to metals provides new perspectives on the modulation of architectures and electronic properties of organic-inorganic hybrid materials. With a view to extending this concept, we have now synthesized nickel bis(dithiolene-dibenzoic acid), [Ni(C2S2(C6H4COOH)2)2], which can be considered as the inorganic analogue of the organic tetrathiafulvalene-tetrabenzoic acid (H4TTFTB). Likewise, [Ni(C2S2(C6H4COOH)2)2] is a redox-active linker for new functional metal-organic frameworks, as demonstrated here with the synthesis of [Mn2{Ni(C2S2(C6H4COO)2)2}(H2O)2]·2DMF, (1, DMF = N,N-dimethylformamide). 1 is isomorphic to the reported [Mn2(TTFTB)(H2O)2] (2) but is a better electrochemical glucose sensor due to the multiple oxidation-reduction states of the [NiS4] core, which allow glucose to be oxidized to glucolactone by the high oxidation state [NiS4] center. As a non-enzymatic glucose sensor, 1 on Cu foam (CF), 1-CF, was synthesized by a one-step hydrothermal method and exhibited an excellent electrochemical performance. The fabricated 1-CF electrode offers a high sensitivity of 27.9 A M-1 cm-2, with a wide linear detection range from 2.0 × 10-6 to 2.0 × 10-3 M, a low detection limit of 1.0 × 10-7 M (signal/noise = 3), and satisfactory stability and reproducibility.

10.
Inorg Chem ; 59(6): 3619-3630, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32124614

RESUMO

A 2-D coordination framework, (NEt4)2[Fe2(fan)3] (1·5(acetone); H2fan = 3,6-difluoro-2,5-dihydroxy-1,4-benzoquinone), was synthesized and structurally characterized. The compound is structurally analogous to a formerly elucidated framework, (NEt4)2[Fe2(can)3] (H2can = 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone), and adopts a 2-D (6,3) topology with the symmetrical stacking of [Fe2(fan)3]2- sheets that are held in position by the NEt4+ cations between the sheets. The investigation of the dc and ac magnetic properties of 1·5(acetone) revealed ferromagnetic ordering behavior and slow magnetization relaxation, as evinced from ac susceptibility measurements. Furthermore, the exposure of 1·5(acetone) to air led to the formation of a heptahydrate 1·7H2O which displayed distinct magnetic properties. The study of the redox state and extent of delocalization in 1·5(acetone) was undertaken via crystallography, in combination with Mössbauer and vis-NIR spectroscopy, to reveal the mixed-valence and delocalized nature of the as-synthesized material. As a result, the conductivity studies conducted on a pressed pellet showed a relatively high conductivity of 1.8 × 10-2 S cm-1 (300 K). In order to compare structurally related anilate-based structures, a relationship among the redox state, spectroscopic properties, and electronic properties was elucidated in this work. A preliminary investigation of 1·5(acetone) as a candidate anode material in lithium ion batteries revealed a high reversible capacity of 676.6 mAh g-1 and high capacity retention.

11.
J Am Chem Soc ; 141(17): 6802-6806, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30998332

RESUMO

The first porous molecular conductor (PMC), which exhibits porosity, a through-space conduction pathway and rich charge carriers (electrons), was prepared through electrocrystallization from Cd2+ and N, N'-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (NDI-py). [Cd(NDI-py)(OH2)4](NO3)1.3±0.1· nDMA (PMC-1) was assembled by π-π stacking among one-dimensional (1D) linear coordination polymers. The NDI cores were partially reduced into radical anions to form conductive π-stacked columns, yielding (1.0-3.3) × 10-3 S cm-1 at room temperature. Moreover, the electrical conductivity was significantly enhanced by removing the solvent molecules from PMC-1, indicating that PMCs are promising as molecule-responsive conductive materials.

12.
Inorg Chem ; 58(6): 3698-3706, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30830770

RESUMO

Metal-organic frameworks (MOFs) incorporating lanthanide nodes and tetrathiafulvalene (TTF) linkers offer a viable approach for combining redox activity and magnetism in one material. Four rare-earth lanthanide ions (RE = Tb, Dy, Ho, and Er) were found to form isostructural MOFs consisting of metal chains bridged by redox-active tetrathiafulvalene-tetrabenzoate (TTFTB4-) whereby the carboxylate moieties act in both anti- anti and syn- syn coordination modes. These materials display tunable redox-active properties and slow magnetic relaxation phenomenon (Er and Dy). While the as-synthesized crystals contain the neutral diamagnetic TTF moiety, using either a solid-solution electrochemical method or iodine oxidation transforms part of the latter to the paramagnetic TTF•+ radical in a single-crystal-to-single-crystal manner without altering the internal structure of the building chains and the frameworks. This is accompanied by inclusion of I3- replacing some of the solvents, as well as changes in the central C-C bond length of TTFTB, a strong EPR response at g ∼ 2, and an enhancement of the reflectance at low energies originating from absorption by the radical.

13.
Inorg Chem ; 58(13): 8657-8664, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31187988

RESUMO

In search of multifunctional metal-organic frameworks (MOFs), redox-active donors and acceptors, namely, tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ), were concomitantly used as skeletal components with diamagnetic metal nodes (Cd and Zn) to construct unique framework materials. Six isostructural frameworks were synthesized by diffusion of metal salts, TTF(py)4, and either paramagnetic Li(TCNQ) or diamagnetic H2TCNQ. They were characterized by single-crystal X-ray diffraction and FT-IR and UV-vis-NIR spectroscopy, and their physical properties were studied, including two postsynthetic modifications involving crystal-to-crystal transformations following a solid-solution reaction with I2. The highly colored crystals of two isostructural Zn and Cd frameworks contain undulating Cd-TTF(py)4 layers entwined with TCNQ in a chicken-wire net as part of the skeleton of the MOF as well as TCNQ intercalated within the channels, while nitrate anions are occluded within the cavities formed by the pyridine moieties. Reaction with I2 replaces each intercalated TCNQ•- within the channels with I3-. The optical properties and the electron paramagnetic resonance (EPR) spectra indicate the presence of only radical TCNQ•- in the parent compounds, while the magnetic susceptibilities enabled an estimation of the amount of TCNQ•- ( S = 1/2) leading to almost paramagnetic behavior. Solid-state electrochemistry provides evidence of several one-electron redox states corresponding to the electroactive cores.

14.
Philos Trans A Math Phys Eng Sci ; 377(2149): 20180226, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31130095

RESUMO

Electroactive and conducting framework materials, encompassing coordination polymers and metal-organic frameworks, have captured the imagination of the scientific community owing to their highly designable nanoporous structures and their potential applications in electrochromic devices, electrocatalysts, porous conductors, batteries and solar energy harvesting systems, among many others. While they are now considered integral members of the broader field of inorganic materials, it is timely to reflect upon their strengths and challenges compared with 'traditional' solid-state materials such as minerals, pigments and zeolites. Indeed, the latter have been known since ancient times and have been prized for centuries in fields as diverse as art, archaeology and industrial catalysis. This opinion piece considers a brief historical perspective of traditional electroactive and conducting inorganic materials, with a view towards very recent experimental progress and new directions for future progress in the burgeoning area of coordination polymers and metal-organic frameworks. Overall, this article bears testament to the rich history of electroactive solids and looks at the challenges inspiring a new generation of scientists. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.

15.
J Am Chem Soc ; 140(21): 6622-6630, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29727176

RESUMO

Understanding the nature of charge transfer mechanisms in 3-dimensional metal-organic frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design electroactive and conductive frameworks. These materials have been proposed as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate, and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4- d]thiazole (TzTz) units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space intervalence charge transfer (IVCT) phenomenon represents a new mechanism for charge transfer in MOFs. Computational modeling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of charge transfer using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light-harvesting systems where through-space mixed-valence interactions are operative.

16.
Inorg Chem ; 57(16): 9766-9774, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29629755

RESUMO

Coordination frameworks containing DCNQI2- (DCNQI = N, N'-dicyanoquinonediimine ligand) are produced by deprotonation of DCNQIH2 in the presence of a metal center and a co-ligand. This approach has yielded two-dimensional (2D) sheet compounds [Cd(DCNQI)(L)2] (where L = pyridine (py) or isoquinoline (isoquin)) that can be partially oxidized via solid-state electrochemical and in situ spectroelectrochemical methods to materials that contain DCNQI as its radical monoanion. The new frameworks display charge-transfer bands that are indicative of interligand charge-transfer interactions as supported by TD-DFT computational calculations. The redox-state dependent spectral properties of the frameworks have been probed using a newly developed solid-state spectroelectrochemical cell. Coupled with computational calculations, the experimental data provide an understanding of the fundamental charge-transfer processes that may underpin long-range functional properties such as conductivity in framework materials.

17.
Phys Chem Chem Phys ; 20(40): 25772-25779, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30283919

RESUMO

The stimuli responsive behaviour of charge transfer donor-acceptor metal-organic frameworks (MOFs) remains an understudied phenomenon which may have applications in tuneable electronic materials. We now report the modification of donor-acceptor charge transfer characteristics in a semiconducting tetrathiafulvalene-naphthalene diimide-based MOF under applied electrochemical bias and pressure. We employ a facile solid state in situ Raman spectroelectrochemical technique, applied for the first time in the characterisation of electroactive MOFs, to monitor the formation of a new complex TTFTC˙+-DPNI from a largely neutral system, upon electrochemical oxidation of the framework. In situ pressure-dependent Raman spectroscopy and powder X-ray diffraction experiments performed in a diamond anvil cell revealed blue shifts in the donor and acceptor vibrational modes in addition to contractions in the unit cell which are indicative of bond shortening. This study demonstrates the utility of in situ Raman spectroscopic techniques in the characterisation of redox-active MOFs and the elucidation of their electronic behaviours.

18.
Anal Chem ; 89(19): 10181-10187, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28770997

RESUMO

Two zeolitic imidazolate frameworks, ZIF-67 and ZIF-8, were interrogated for their redox properties using Fourier transformed alternating current voltammetry, which revealed that the 2-methylimidazolate ligand is responsible for multiple redox transformations. Further insight was gained by employing discrete tetrahedral complexes, [M(DMIM)4]2+ (DMIM = 1,2-dimethylimidazole, M = CoII or ZnII) which have similar structural motifs to ZIFs. In this work we demonstrate a multidirectional approach that enables the complex electrochemical behavior of ZIFs to be unraveled.

19.
Inorg Chem ; 56(23): 14373-14382, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29125761

RESUMO

The fundamentally important phenomenon of mixed valency has been discussed in detail over the past 50 years, predominantly in the context of dinuclear complexes, which are used as model systems for understanding electron delocalization in more complex biological and physical systems. Very recently, mixed valency has been shown to be an important mechanism for charge transfer, leading to delocalization and conductivity in two- and three-dimensional framework materials such as metal-organic frameworks and related systems including covalent organic frameworks and semicrystalline semiconducting metal-organic graphenes. This Viewpoint provides a current perspective on the field of mixed-valence frameworks, where the property is either intrinsic or generated postsynthetically via an external stimulus. Aspects of the spectroscopy and applications of these materials are also discussed, highlighting the future potential for exploiting mixed valency in extended solid-state systems.

20.
Inorg Chem ; 56(15): 9025-9035, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28723082

RESUMO

A pair of coordination polymers of composition (NBu4)2[M2(fan)3] (fan = fluoranilate; M = Fe and Zn) were synthesized and structurally characterized. In each case the compound consists of a pair of interpenetrating three-dimensional, (10,3)-a networks in which metal centers are linked by chelating/bridging fluoranilate ligands. Tetrabutylammonium cations are located in the spaces between the two networks. Despite the structural similarity, significant differences exist between (NBu4)2[Fe2(fan)3] and (NBu4)2[Zn2(fan)3] with respect to the oxidation states of the metal centers and ligands. For (NBu4)2[Fe2(fan)3] the structure determination as well as Mössbauer spectroscopy indicate the oxidation state for the Fe is close to +3, which contrasts with the +2 state for the Zn analogue. The differences between the two compounds extends to the ligands, with the Zn network involving only fluoranilate dianions, whereas the average oxidation state for the fluoranilate in the Fe network lies somewhere between -2 and -3. Magnetic studies on the Fe compound indicate short-range ordering. Electrochemical and spectro-electrochemical investigations indicate that the fluoranilate ligand is redox-active in both complexes; a reduced form of (NBu4)2[Fe2(fan)3] was generated by chemical reduction. Conductivity measurements indicate that (NBu4)2[Fe2(fan)3] is a semiconductor, which is attributed to the mixed valency of the fluoranilate ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA