Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298369

RESUMO

Our understanding of the pathophysiology of the nervous system has advanced significantly in the last few years, but there are still many unanswered questions [...].


Assuntos
Sistema Nervoso Central , Inflamação , Humanos
2.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682973

RESUMO

Friedreich's ataxia (FRDA) is a rare genetic disorder caused by mutations in the gene frataxin, encoding for a mitochondrial protein involved in iron handling and in the biogenesis of iron-sulphur clusters, and leading to progressive nervous system damage. Although the overt manifestations of FRDA in the nervous system are mainly observed in the neurons, alterations in non-neuronal cells may also contribute to the pathogenesis of the disease, as recently suggested for other neurodegenerative disorders. In FRDA, the involvement of glial cells can be ascribed to direct effects caused by frataxin loss, eliciting different aberrant mechanisms. Iron accumulation, mitochondria dysfunction, and reactive species overproduction, mechanisms identified as etiopathogenic in neurons in FRDA, can similarly affect glial cells, leading them to assume phenotypes that can concur to and exacerbate neuron loss. Recent findings obtained in FRDA patients and cellular and animal models of the disease have suggested that neuroinflammation can accompany and contribute to the neuropathology. In this review article, we discuss evidence about the involvement of neuroinflammatory-related mechanisms in models of FRDA and provide clues for the modulation of glial-related mechanisms as a possible strategy to improve disease features.


Assuntos
Ataxia de Friedreich , Animais , Ataxia de Friedreich/metabolismo , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias
3.
J Neuroinflammation ; 18(1): 132, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118929

RESUMO

BACKGROUND: An increasing number of studies evidences that amyotrophic lateral sclerosis (ALS) is characterized by extensive alterations in different cell types and in different regions besides the CNS. We previously reported the upregulation in ALS models of a gene called fibroblast-specific protein-1 or S100A4, recognized as a pro-inflammatory and profibrotic factor. Since inflammation and fibrosis are often mutual-sustaining events that contribute to establish a hostile environment for organ functions, the comprehension of the elements responsible for these interconnected pathways is crucial to disclose novel aspects involved in ALS pathology. METHODS: Here, we employed fibroblasts derived from ALS patients harboring the C9orf72 hexanucleotide repeat expansion and ALS patients with no mutations in known ALS-associated genes and we downregulated S100A4 using siRNA or the S100A4 transcriptional inhibitor niclosamide. Mice overexpressing human FUS were adopted to assess the effects of niclosamide in vivo on ALS pathology. RESULTS: We demonstrated that S100A4 underlies impaired autophagy and a profibrotic phenotype, which characterize ALS fibroblasts. Indeed, its inhibition reduces inflammatory, autophagic, and profibrotic pathways in ALS fibroblasts, and interferes with different markers known as pathogenic in the disease, such as mTOR, SQSTM1/p62, STAT3, α-SMA, and NF-κB. Importantly, niclosamide in vivo treatment of ALS-FUS mice reduces the expression of S100A4, α-SMA, and PDGFRß in the spinal cord, as well as gliosis in central and peripheral nervous tissues, together with axonal impairment and displays beneficial effects on muscle atrophy, by promoting muscle regeneration and reducing fibrosis. CONCLUSION: Our findings show that S100A4 has a role in ALS-related mechanisms, and that drugs such as niclosamide which are able to target inflammatory and fibrotic pathways could represent promising pharmacological tools for ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Proteína A4 de Ligação a Cálcio da Família S100/antagonistas & inibidores , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico , Fibrose/prevenção & controle , Humanos , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Camundongos , Mutação , NF-kappa B/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Neurobiol Dis ; 138: 104792, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027933

RESUMO

Activation of the integrated stress response (ISR), alterations in nucleo-cytoplasmic (N/C) transport and changes in alternative splicing regulation are all common traits of the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). However, whether these processes act independently from each other, or are part of a coordinated mechanism of gene expression regulation that is affected in pathogenic conditions, is still rather undefined. To answer these questions, in this work we set out to characterise the functional connections existing between ISR activation and nucleo-cytosol trafficking and nuclear localization of spliceosomal U-rich small nuclear ribonucleoproteins (UsnRNPs), the core constituents of the spliceosome, and to study how ALS-linked mutant proteins affect this interplay. Activation of the ISR induces a profound reorganization of nuclear Gems and Cajal bodies, the membrane-less particles that assist UsnRNP maturation and storage. This effect requires the cytoplasmic assembly of SGs and is associated to the disturbance of the nuclear import of UsnRNPs by the snurportin-1/importin-ß1 system. Notably, these effects are reversed by both inhibiting the ISR or upregulating importin-ß1. This indicates that SGs are major determinants of Cajal bodies assembly and that the modulation of N/C trafficking of UsnRNPs might control alternative splicing in response to stress. Importantly, the dismantling of nuclear Gems and Cajal bodies by ALS-linked mutant FUS or C9orf72-derived dipeptide repeat proteins is halted by overexpression of importin-ß1, but not by inhibition of the ISR. This suggests that changes in the nuclear localization of the UsnRNP complexes induced by mutant ALS proteins are uncoupled from ISR activation, and that defects in the N/C trafficking of UsnRNPs might play a role in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Mutantes/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Processamento Alternativo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Núcleo Celular/genética , Citoplasma/genética , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Neurônios Motores/patologia , Mutação , Transporte Proteico/genética , Proteína FUS de Ligação a RNA/genética
5.
J Neurochem ; 148(2): 168-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30144068

RESUMO

S100B is a Ca2+ -binding protein mainly concentrated in astrocytes. Its levels in biological fluids (cerebrospinal fluid, peripheral and cord blood, urine, saliva, amniotic fluid) are recognized as a reliable biomarker of active neural distress. Although the wide spectrum of diseases in which the protein is involved (acute brain injury, neurodegenerative diseases, congenital/perinatal disorders, psychiatric disorders) reduces its specificity, its levels remain an important aid in monitoring the trend of the disorder. Mounting evidence now points to S100B as a Damage-Associated Molecular Pattern molecule which, when released at high concentration, through its Receptor for Advanced Glycation Endproducts, triggers tissue reaction to damage in a series of different neural disorders. This review addresses this novel scenario, presenting data indicating that S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease: acute brain injury (ischemic/hemorrhagic stroke, traumatic injury), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis), congenital/perinatal disorders (Down syndrome, spinocerebellar ataxia-1), psychiatric disorders (schizophrenia, mood disorders), inflammatory bowel disease. In many cases, over-expression/administration of the protein induces worsening of the disease, whereas its deletion/inactivation produces amelioration. This review points out that the pivotal role of the protein resulting from these data, opens the perspective that S100B may be regarded as a therapeutic target for these different diseases, which appear to share some common features reasonably attributable to neuroinflammation, regardless their origin.


Assuntos
Biomarcadores , Doenças do Sistema Nervoso , Subunidade beta da Proteína Ligante de Cálcio S100 , Animais , Humanos
6.
J Neurochem ; 146(5): 585-597, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29779213

RESUMO

TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full-length protein and as two shorter forms of 25 and 35 kDa. Full-length mutant TDP-43s found in amyotrophic lateral sclerosis patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space, while the full-length forms also localize in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full-length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full-length and short isoforms to generate toxic aggregates, we propose that the presence of full-length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Neurônios , Oligonucleotídeos/toxicidade , Isoformas de Proteínas/metabolismo , Linhagem Celular Transformada , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Citosol/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Imunoprecipitação , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mutação/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Consumo de Oxigênio/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transfecção
7.
Biochem Biophys Res Commun ; 483(4): 1187-1193, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27416757

RESUMO

Alterations in the structure and functions of mitochondria are a typical trait of Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by a prominent degeneration of upper and lower motor neurons. The known gene mutations that are responsible for a small fraction of ALS cases point to a complex interplay between different mechanisms in the disease pathogenesis. Here we will briefly overview the genetic and mechanistic evidence that make dysfunction of mitochondria a candidate major player in this process.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Mitocôndrias/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Mutação
8.
Mediators Inflamm ; 2017: 1626204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713206

RESUMO

Neuroinflammation is one of the major players in amyotrophic lateral sclerosis (ALS) pathogenesis, and astrocytes are significantly involved in this process. The astrocytic protein S100B can be released in pathological states activating the receptor for advanced glycation end products (RAGE). Different indications point to an aberrant expression of S100B and RAGE in ALS. In this work, we observed that S100B and RAGE are progressively and selectively upregulated in astrocytes of diseased rats with a tissue-specific timing pattern, correlated to the level of neurodegeneration. The expression of the full-length and soluble RAGE isoforms could also be linked to the degree of tissue damage. The mere presence of mutant SOD1 is able to increase the intracellular levels and release S100B from astrocytes, suggesting the possibility that an increased astrocytic S100B expression might be an early occurring event in the disease. Finally, our findings indicate that the protein may exert a proinflammatory role in ALS, since its inhibition in astrocytes derived from SOD1G93A mice limits the expression of reactivity-linked/proinflammatory genes. Thus, our results propose the S100B-RAGE axis as an effective contributor to the pathogenesis of the disease, suggesting its blockade as a rational target for a therapeutic intervention in ALS.


Assuntos
Receptor para Produtos Finais de Glicação Avançada/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Superóxido Dismutase-1/metabolismo , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Western Blotting , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Masculino , Microscopia de Fluorescência , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Superóxido Dismutase-1/genética
9.
Hum Mol Genet ; 22(20): 4102-16, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23736299

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by selective degeneration of upper and lower motoneurons. The primary triggers for motoneuron degeneration are still unknown, but inflammation is considered an important contributing factor. P2X7 receptor is a key player in microglia response to toxic insults and was previously shown to increase pro-inflammatory actions of SOD1-G93A ALS microglia. We therefore hypothesized that lack of P2X7 receptor could modify disease features in the SOD1-G93A mice. Hetero- and homozygous P2X7 receptor knock-out SOD1-G93A mice were thus generated and analysed for body weight, disease onset and progression (by behavioural scores, grip and rotarod tests) and survival. Although the lifespan of P2X7(+/-) and P2X7(-/-)/SOD1-G93A female mice was extended by 6-7% with respect to SOD1-G93A mice, to our surprise the clinical onset was significantly anticipated and the disease progression worsened in both male and female P2X7(-/-)/SOD1-G93A mice. Consistently, we found increased astrogliosis, microgliosis, motoneuron loss, induction of the pro-inflammatory markers NOX2 and iNOS and activation of the MAPKs pathway in the lumbar spinal cord of end-stage P2X7(-/-)/SOD1-G93A mice. These results show that the constitutive deletion of P2X7 receptor aggravates the ALS pathogenesis, suggesting that the receptor might have beneficial effects in at least definite stages of the disease. This study unravels a complex dual role of P2X7 receptor in ALS and strengthens the importance of a successful time window of therapeutic intervention in contrasting the pathology.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Neurônios Motores/patologia , Receptores Purinérgicos P2X7/fisiologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Animais , Peso Corporal , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gliose/metabolismo , Gliose/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Atividade Motora , Neurônios Motores/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Purinérgicos P2X7/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Fatores de Tempo
10.
J Immunol ; 190(10): 5187-95, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23589615

RESUMO

Inflammation and oxidative stress are thought to play determinant roles in the pathogenesis of amyotrophic lateral sclerosis (ALS). Degenerating motor neurons produce signals that activate microglia to release reactive oxygen species (ROS) and proinflammatory cytokines, resulting in a vicious cycle of neurodegeneration. The ALS-causing mutant protein Cu(+)/Zn(+) superoxide dismutase SOD1-G93A directly enhances the activity of the main ROS-producing enzyme in microglia, NADPH oxidase 2 (NOX2), a well-known player in the pathogenesis of ALS. Considering that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS pathology, we used primary microglial cells derived from transgenic SOD1-G93A mice and SOD1-G93A mice lacking the P2X7 receptor to investigate the effects of both pharmacological induction and genetic ablation of receptor activity on the NOX2 pathway. We observed that, in SOD1-G93A microglia, the stimulation of P2X7 receptor by 2'-3'-O-(benzoyl-benzoyl) ATP enhanced NOX2 activity in terms of translocation of p67(phox) to the membrane and ROS production; this effect was totally dependent on Rac1. We also found that, following P2X7 receptor stimulation, the phosphorylation of ERK1/2 was augmented in ALS microglia, and there was a mutual dependency between the NOX2 and ERK1/2 pathways. All of these microglia-mediated damaging mechanisms were prevented by knocking out P2X7 receptor and by the use of specific antagonists. These findings suggest a noxious mechanism by which P2X7 receptor leads to enhanced oxidative stress in ALS microglia and identify the P2X7 receptor as a promising target for the development of therapeutic strategies to slow down the progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , NADPH Oxidases/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Esclerose Lateral Amiotrófica/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , NADPH Oxidase 2 , Neuropeptídeos/metabolismo , Estresse Oxidativo , Fosfoproteínas/metabolismo , Fosforilação , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Espécies Reativas de Oxigênio , Receptores Purinérgicos P2X7/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Tetrazóis/farmacologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
11.
Neurotherapeutics ; 21(3): e00346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493058

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease influenced by genetic, epigenetic, and environmental factors, resulting in dysfunction in cellular and molecular pathways. The limited efficacy of current treatments highlights the need for combination therapies targeting multiple aspects of the disease. Niclosamide, an anthelminthic drug listed as an essential medicine, has been repurposed in clinical trials for different diseases due to its anti-inflammatory and anti-fibrotic properties. Niclosamide can inhibit various molecular pathways (e.g., STAT3, mTOR) that are dysregulated in ALS, suggesting its potential to disrupt these altered mechanisms associated with the pathology. We administered niclosamide intraperitoneally to two transgenic murine models, SOD1-G93A and FUS mice, mimicking key pathological processes of ALS. The treatment was initiated at the onset of symptoms, and we assessed disease progression by neurological scores, rotarod and wire tests, and monitored survival. Furthermore, we investigated cellular and molecular mechanisms affected by niclosamide in the spinal cord and muscle of ALS mice. In both models, the administration of niclosamide resulted in a slowdown of disease progression, an increase in survival rates, and an improvement in tissue pathology. This was characterised by reduced gliosis, motor neuron loss, muscle atrophy, and inflammatory pathways. Based on these results, our findings demonstrate that niclosamide can impact multiple pathways involved in ALS. This multi-targeted approach leads to a slowdown in the progression of the disease, positioning niclosamide as a promising candidate for repurposing in the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Progressão da Doença , Fármacos Neuroprotetores , Niclosamida , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
12.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631900

RESUMO

Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.


Assuntos
Frataxina , Ataxia de Friedreich , Succinatos , Animais , Camundongos , Butiratos , Frataxina/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Glucose , Microglia/metabolismo
13.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566088

RESUMO

Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in C9orf72, the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates the nucleocytoplasmic distribution of proteins and RNAs. We previously reported that the expression of G4C2 hexanucleotide repeats in cultured human and mouse cells caused a marked accumulation of poly(A) mRNAs in the cell nuclei. To further characterize the process, we set out to systematically identify the specific mRNAs that are altered in their nucleocytoplasmic distribution in the presence of C9orf72-ALS RNA repeats. Interestingly, pathway analysis showed that the mRNAs involved in membrane trafficking are particularly enriched among the identified mRNAs. Most importantly, functional studies in cultured cells and Drosophila indicated that C9orf72 toxic species affect the membrane trafficking route regulated by ADP-Ribosylation Factor 1 GTPase Activating Protein (ArfGAP-1), which exerts its GTPase-activating function on the small GTPase ADP-ribosylation factor 1 to dissociate coat proteins from Golgi-derived vesicles. We demonstrate that the function of ArfGAP-1 is specifically affected by expanded C9orf72 RNA repeats, as well as by C9orf72-related dipeptide repeat proteins (C9-DPRs), indicating the retrograde Golgi-to-ER vesicle-mediated transport as a target of C9orf72 toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Proteínas Ativadoras de GTPase , Animais , Humanos , Camundongos , Fator 1 de Ribosilação do ADP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Drosophila/genética , Drosophila/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo
14.
Cells ; 11(2)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053309

RESUMO

Neuron loss occurring in neurodegenerative diseases represents just the final step in a series of events involving several cell types, other than neurons, that actively contribute to the overall pathogenic mechanisms by establishing harmful non-cell autonomous effects [...].


Assuntos
Doenças Neurodegenerativas/patologia , Neurônios/patologia , Astrócitos , Ensaios Clínicos como Assunto , Humanos , Microglia/patologia
15.
Glycobiology ; 21(5): 634-43, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21186285

RESUMO

N-Glycosylation affects the function of ion channels at the level of multisubunit assembly, protein trafficking, ligand binding and channel opening. Like the majority of membrane proteins, ionotropic P2X receptors for extracellular ATP are glycosylated in their extracellular moiety. Here, we used site-directed mutagenesis to the four predicted N-glycosylation sites of P2X(3) receptor (Asn(139), Asn(170), Asn(194) and Asn(290)) and performed comparative analysis of the role of N-glycans on protein stability, plasma membrane delivery, trimer formation and inward currents. We have found that in transiently transfected HEK293 cells, Asn(170) is apparently the most important site for receptor stability, since its mutation causes a primary loss in protein content and indirect failure in membrane expression, oligomeric association and inward current responses. Even stronger effects are obtained when mutating Thr(172) in the same glycosylation consensus. Asn(194) and Asn(290) are the most dispensable, since even their simultaneous mutation does not affect any tested receptor feature. All double mutants containing Asn(170) mutation or the Asn(139)/Asn(290) double mutant are instead almost unable to assemble into a functional trimeric structure. The main emerging finding is that the inability to assemble into trimers might account for the impaired function in P2X(3) mutants where residue Asn(170) is replaced. These results improve our knowledge about the role of N-glycosylation in proper folding and oligomeric association of P2X(3) receptor.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Processamento de Proteína Pós-Traducional/genética , Receptores Purinérgicos P2X3/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Glicosilação , Células HEK293 , Humanos , Leupeptinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Multimerização Proteica , Ratos , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética , Alinhamento de Sequência
16.
J Neurochem ; 116(5): 796-805, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21214557

RESUMO

ATP is a widespread and multipurpose signalling molecule copiously released in the extracellular environment of the whole nervous system upon cell activation, stress, or damage. Extracellular ATP is also a multidirectional information molecule, given the concurrent presence at the plasma membrane of various targets for ATP. These include ectonucleotidases (metabolizing ATP down to adenosine), ATP/adenosine transporters, P2 receptors for purine/pyrimidine nucleotides (ligand-gated ion channels P2X receptors and G-protein-coupled P2Y receptors), in addition to metabotropic P1 receptors for nucleosides. All these targets rarely operate as single units, rather they associate with each other at the plasma membrane as multi-protein complexes. Altogether, they control the duration, magnitude and/or direction of the signals triggered and propagated by purine/pyrimidine ligands, and the impact that each single ligand has on a variety of short- and long-term functions. A strict control system allows assorted, even divergent, biological outcomes. Among these, we enumerate cell-to-cell communication, tropic, trophic, but also noxious actions causing the insurgence/progression of pathological conditions. Here, we show that purinergic signalling in the nervous system can be instrumental for instance to neurodegenerative and neuroinflammatory diseases such as amyotrophic lateral sclerosis and multiple sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Membrana Celular/metabolismo , Esclerose Múltipla/metabolismo , Purinas/metabolismo , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Receptores Purinérgicos/metabolismo
17.
J Immunol ; 183(7): 4648-56, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734218

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective loss of lower and upper motoneurons. The pathology is imputable in approximately 2% of cases to mutations in the ubiquitous enzyme Cu, Zn superoxide dismutase (SOD1). Common theories to explain the pathogenic mechanisms of ALS include activation of microglia, responsible for the release of proinflammatory factors. However, how mutant SOD1 affects microglial activation and subsequently injures neurons is still unclear. Considering that extracellular ATP, through purinergic P2 receptors, constitutes a well recognized neuron-to-microglia alarm signal, the aim of this study was to investigate how the expression of mutant SOD1 affects P2 receptor-mediated proinflammatory microglial properties. We used primary and immortalized microglial cells from mutant SOD1 mice to explore several aspects of activation by purinergic ligands and to analyze the overall effect of such stimulation on the viability of NSC-34 and SH-SY5Y neuronal cell lines. We observed up-regulation of P2X(4), P2X(7), and P2Y(6) receptors and down-regulation of ATP-hydrolyzing activities in mutant SOD1 microglia. This potentiation of the purinergic machinery reflected into enhanced sensitivity mainly to 2'-3'-O-(benzoyl-benzoyl) ATP, a P2X(7) receptor preferential agonist, and translated into deeper morphological changes, enhancement of TNF-alpha and cyclooxygenase-2 content, and finally into toxic effects exerted on neuronal cell lines by microglia expressing mutant SOD1. All these parameters were prevented by the antagonist Brilliant Blue G. The purinergic activation of microglia may thus constitute a new route involved in the progression of ALS to be exploited to potentially halt the disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Mediadores da Inflamação/fisiologia , Microglia/metabolismo , Microglia/patologia , Receptores Purinérgicos P2/fisiologia , Superóxido Dismutase/fisiologia , Regulação para Cima , Alanina/genética , Substituição de Aminoácidos/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Regulação Enzimológica da Expressão Gênica , Glicina/genética , Humanos , Camundongos , Camundongos Transgênicos , Microglia/enzimologia , Fenótipo , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2/genética , Transdução de Sinais/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Regulação para Cima/genética
18.
Cells ; 10(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804596

RESUMO

Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or "pruning") of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients' long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Sinapses/patologia , Animais , Humanos , Modelos Teóricos , Neurônios/patologia
19.
Cells ; 10(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918416

RESUMO

S100A4 is a member of the large family of S100 proteins, exerting a broad range of intracellular and extracellular functions that vary upon different cellular contexts. While S100A4 has long been implicated mainly in tumorigenesis and metastatization, mounting evidence shows that S100A4 is a key player in promoting pro-inflammatory phenotypes and organ pro-fibrotic pathways in the liver, kidney, lung, heart, tendons, and synovial tissues. Regarding the nervous system, there is still limited information concerning S100A4 presence and function. It was observed that S100A4 exerts physiological roles contributing to neurogenesis, cellular motility and chemotaxis, cell differentiation, and cell-to cell communication. Furthermore, S100A4 is likely to participate to numerous pathological processes of the nervous system by affecting the functions of astrocytes, microglia, infiltrating cells and neurons and thereby modulating inflammation and immune reactions, fibrosis as well as neuronal plasticity and survival. This review summarizes the current state of knowledge concerning the localization, deregulation, and possible functions of S100A4 in the physiology of the central and peripheral nervous system. Furthermore, we highlight S100A4 as a gene involved in the pathogenesis of neurological disorders such as brain tumors, neurodegenerative diseases, and acute injuries.


Assuntos
Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Periférico/patologia , Sistema Nervoso Periférico/fisiopatologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Modelos Biológicos , Proteína A4 de Ligação a Cálcio da Família S100/química , Proteína A4 de Ligação a Cálcio da Família S100/genética
20.
Prog Neurobiol ; 86(2): 61-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18722498

RESUMO

A constant pattern through the development of cellular life is that not only cells but also subcellular components such as proteins, either being enzymes, receptors, signaling or structural proteins, strictly cooperate. Discerning how protein cooperation originated and propagates over evolutionary time, how proteins work together to a shared outcome far beyond mere interaction, thus represents a theoretical and experimental challenge for evolutionary, molecular, and computational biology, and a timely fruition also for biotechnology. In this review, we describe some basic principles sustaining not only cellular but especially protein cooperative behavior, with particular emphasis on neurobiological systems. We illustrate experimental results and numerical models substantiating that bench research, as well as computer analysis, indeed concurs in recognizing the natural propensity of proteins to cooperate. At the cellular level, we exemplify network connectivity in the thalamus, hippocampus and basal ganglia. At the protein level, we depict numerical models about the receptosome, the protein machinery connecting neurotransmitters or growth factors to specific, unique downstream effector proteins. We primarily focus on the purinergic P2/P1 receptor systems for extracellular purine and pyrimidine nucleotides/nucleosides. By spanning concepts such as single-molecule biology to membrane computing, we seek to stimulate a scientific debate on the implications of protein cooperation in neurobiological systems.


Assuntos
Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Animais , Humanos , Modelos Neurológicos , Rede Nervosa/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Frações Subcelulares/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA