Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38216542

RESUMO

The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (ß = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (ß = -0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain-bone interaction.


Assuntos
Análise da Randomização Mendeliana , Osteoporose , Humanos , Osteoporose/diagnóstico por imagem , Osteoporose/genética , Encéfalo , Nonoxinol , Compostos Radiofarmacêuticos , Estudo de Associação Genômica Ampla
2.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37856192

RESUMO

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Ceras/metabolismo
3.
BMC Cancer ; 24(1): 71, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216883

RESUMO

BACKGROUND: Ras gene mutation and/or overexpression are drivers in the progression of cancers, including colorectal cancer. Blocking the Ras signaling has become a significant strategy for cancer therapy. Previously, we constructed a recombinant scFv, RGD-p21Ras-scFv by linking RGD membrane-penetrating peptide gene with the anti-p21Ras scFv gene. Here, we expressed prokaryotically RGD-p21Ras-scFv on a pilot scale, then investigated the anti-tumor effect and the mechanism of blocking Ras signaling. METHODS: The E. coli bacteria which could highly express RGD-p21Ras-scFv was screened and grown in 100 L fermentation tank to produce RGD-p21Ras-scFv on optimized induced expression conditions. The scFv was purified from E. coli bacteria using His Ni-NTA column. ELISA was adopted to test the immunoreactivity of RGD-p21Ras-scFv against p21Ras proteins, and the IC50 of RGD-p21Ras-scFv was analyzed by CCK-8. Immunofluorescence colocalization and pull-down assays were used to determine the localization and binding between RGD-p21Ras-scFv and p21Ras. The interaction forces between RGD-p21Ras-scFv and p21Ras after binding were analyzed by molecular docking, and the stability after binding was determined by molecular dynamics simulations. p21Ras-GTP interaction was detected by Ras pull-down. Changes in the MEK-ERK /PI3K-AKT signaling paths downstream of Ras were detected by WB assays. The anti-tumor activity of RGD-p21Ras-scFv was investigated by nude mouse xenograft models. RESULTS: The technique of RGD-p21Ras-scFv expression on a pilot scale was established. The wet weight of the harvested bacteria was 31.064 g/L, and 31.6 mg RGD-p21Ras-scFv was obtained from 1 L of bacterial medium. The purity of the recombinant antibody was above 85%, we found that the prepared on a pilot scale RGD-p21Ras-scFv could penetrate the cell membrane of colon cancer cells and bind to p21Ras, then led to reduce of p21Ras-GTP (active p21Ras). The phosphorylation of downstream effectors MEK-ERK /PI3K-AKT was downregulated. In vivo antitumor activity assays showed that the RGD-p21Ras-scFv inhibited the proliferation of colorectal cancer cell lines. CONCLUSION: RGD-p21Ras-scFv prokaryotic expressed on pilot-scale could inhibited Ras-driven colorectal cancer growth by partially blocking p21Ras-GTP and might be able to be a hidden therapeutic antibody for treating RAS-driven tumors.


Assuntos
Neoplasias Colorretais , Escherichia coli , Camundongos , Animais , Humanos , Escherichia coli/genética , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Guanosina Trifosfato , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Environ Res ; 259: 119576, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996958

RESUMO

The interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log KDOC values were determined. The results showed that the Log KDOC of AEPS was higher than that of ALE, which exhibited a negative KDOC value, indicating an inhibitory effect on dissolution. For the three SAs studied, the Log KDOC values were in the following order: sulfamethoxazole > sulfapyridine > sulfadiazine. This order can be attributed to the differing physicochemical properties, such as polarity, of the SAs. Three-dimensional excitation-emission matrix fluorescence spectra and fitting results indicated a lack of aromatic proteins dominated by tryptophan and humus-like substances in ALE. Meanwhile, the hydrophobic interaction of aromatic proteins dominated by tryptophan was the main driving force in the binding process between AEPS and SAs.

5.
Plant J ; 112(4): 982-997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164829

RESUMO

Chloroplasts play a crucial role in plant growth and fruit quality. However, the molecular mechanisms of chloroplast development are still poorly understood in fruits. In this study, we investigated the role of the transcription factor SlBEL2 (BEL1-LIKE HOMEODOMAIN 2) in fruit of Solanum lycopersicum (tomato). Phenotypic analysis of SlBEL2 overexpression (OE-SlBEL2) and SlBEL2 knockout (KO-SlBEL2) plants revealed that SlBEL2 has the function of inhibiting green shoulder formation in tomato fruits by affecting the development of fruit chloroplasts. Transcriptome profiling revealed that the expression of chloroplast-related genes such as SlGLK2 and SlLHCB1 changed significantly in the fruit of OE-SlBEL2 and KO-SlBEL2 plants. Further analysis showed that SlBEL2 could not only bind to the promoter of SlGLK2 to inhibit its transcription, but also interacted with the SlGLK2 protein to inhibit the transcriptional activity of SlGLK2 and its downstream target genes. SlGLK2 knockout (KO-SlGLK2) plants exhibited a complete absence of the green shoulder, which was consistent with the fruit phenotype of OE-SlBEL2 plants. SlBEL2 showed an expression gradient in fruits, in contrast with that reported for SlGLK2. In conclusion, our study reveals that SlBEL2 affects the formation of green shoulder in tomato fruits by negatively regulating the gradient expression of SlGLK2, thus providing new insights into the molecular mechanism of fruit green shoulder formation.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Ombro , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 108(5): 1317-1331, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580960

RESUMO

Fruit ripening in tomato (Solanum lycopersicum) is the result of selective expression of ripening-related genes, which are regulated by transcription factors (TFs). The NAC (NAM, ATAF1/2, and CUC2) TF family is one of the largest families of plant-specific TFs and members are involved in a variety of plant physiological activities, including fruit ripening. Fruit ripening-associated NAC TFs studied in tomato to date include NAC-NOR (non-ripening), SlNOR-like1 (non-ripening like1), SlNAC1, and SlNAC4. Considering the large number of NAC genes in the tomato genome, there is little information about the possible roles of other NAC members in fruit ripening, and research on their target genes is lacking. In this study, we characterize SlNAM1, a NAC TF, which positively regulates the initiation of tomato fruit ripening via its regulation of ethylene biosynthesis. The onset of fruit ripening in slnam1-deficient mutants created by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology was delayed, whereas fruit ripening in OE-SlNAM1 lines was accelerated compared with the wild type. The results of RNA-sequencing (RNA-seq) and promoter analysis suggested that SlNAM1 directly binds to the promoters of two key ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate synthase: SlACS2 and SlACS4) and activates their expression. This hypothesis was confirmed by electrophoretic mobility shift assays and dual-luciferase reporter assay. Our findings provide insights into the mechanisms of ethylene production and enrich understanding of the tomato fruit ripening regulatory network.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Frutas/genética , Frutas/fisiologia , Liases/genética , Liases/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Am Chem Soc ; 144(19): 8807-8817, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522220

RESUMO

Here, we describe the unexpected discovery of a Cu-catalyzed condensation polymerization reaction of propargylic electrophiles (CPPE) that transforms simple C3 building blocks into polydiynes of C6 repeating units. This reaction was achieved by a simple system composed of a copper acetylide initiator and an electron-rich phosphine ligand. Alkyne polymers (up to 33.8 kg/mol) were produced in good yields and exclusive regioselectivity with high functional group compatibility. Hydrogenation of the product afforded a new polyolefin-type backbone, while base-mediated isomerization led to a new type of dienyne-based electron-deficient conjugated polymer. Mechanistic studies revealed a new α-α selective Cu-catalyzed dimerization pathway of the C3 unit, followed by in situ organocopper-mediated chain-growth propagation. These insights not only provide an important understanding of the Cu-catalyzed CPPE of C3, C4, and C6 monomers in general but also lead to a significantly improved synthesis of polydiynes from simpler starting materials with handles for the incorporation of an α-end functional group.


Assuntos
Alcinos , Cobre , Catálise , Dimerização , Polimerização , Polímeros
8.
New Phytol ; 235(5): 1913-1926, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35686614

RESUMO

Flavor-imparting volatile chemicals accumulate as fruits ripen, making major contributions to taste. The NAC transcription factor nonripening (NAC-NOR) and DNA demethylase 2 (SlDML2) are essential for tomato fruit ripening, but details of the potential roles and the relationship between these two regulators in the synthesis of volatiles are lacking. Here, we show substantial reductions in fatty acid and carotenoid-derived volatiles in tomato slnor and sldml2 mutants. An unexpected finding is the redundancy and divergence in volatile profiles, biosynthetic gene expression, and DNA methylation in slnor and sldml2 mutants relative to wild-type tomato fruit. Reduced transcript levels are accompanied by hypermethylation of promoters, including the NAC-NOR target gene lipoxygenase (SlLOXC) that is involved in fatty acid-derived volatile synthesis. Interestingly, NAC-NOR activates SlDML2 expression by directly binding to its promoter both in vitro and in vivo. Meanwhile, reduced NAC-NOR expression in the sldml2 mutant is accompanied by hypermethylation of its promoter. These results reveal a relationship between SlDML2-mediated DNA demethylation and NAC-NOR during tomato fruit ripening. In addition to providing new insights into the metabolic modulation of flavor volatiles, the outcome of our study contributes to understanding the genetics and control of fruit ripening and quality attributes in tomato.


Assuntos
Solanum lycopersicum , DNA , Ácidos Graxos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Neurol Sci ; 43(4): 2785-2790, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34709479

RESUMO

OBJECTIVE: Myasthenia gravis (MG) is an autoimmune disorder whose main symptoms are muscle weakness and fatigue. Irisin is a novel skeletal muscle-derived myokine participating in several physiological and pathological processes. The initial objective of the project was to explore serum levels of irisin in patients with MG, as well as its correlation with disease severity. METHODS: We retrospectively evaluated serum levels of irisin in 77 MG patients and 57 healthy controls (HCs) by enzyme-linked immunosorbent assay. Further, clinical parameters were measured properly. RESULTS: Serum irisin levels were significantly elevated in MG patients compared with HCs (p < 0.001). Furthermore, serum irisin levels were associated with the myasthenia gravis activities of daily living score in ocular myasthenia gravis (OMG) patients (r = 0.476, p = 0.004), but there was no relationship to be considered of any relevant value in generalized myasthenia gravis (GMG) patients. Acetylcholine receptor antibody-positive MG patients had higher serum irisin levels compared with HCs. Thymoma, endotracheal intubation, or intensive care unit treatments subsequently were not found to have effect on serum levels of irisin, but tendencies of increase were observed in negative ones. CONCLUSIONS: Serum irisin levels were elevated in patients with MG, suggesting its possible involvement in MG. And irisin is expected to be a signal to evaluate the activities of daily living of OMG patients, while its effect needs further study.


Assuntos
Atividades Cotidianas , Fibronectinas , Miastenia Gravis , Autoanticorpos/sangue , Fibronectinas/sangue , Humanos , Miastenia Gravis/sangue , Miastenia Gravis/diagnóstico , Receptores Colinérgicos/imunologia , Estudos Retrospectivos
10.
Clin Exp Immunol ; 206(2): 208-215, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428306

RESUMO

Irisin is a novel hormone-like myokine that plays an important role in central nervous system (CNS) diseases, such as cerebral ischaemia and Alzheimer's disease. However, irisin is rarely investigated in multiple sclerosis (MS), a typical inflammatory demyelinating disease of the CNS, and in experimental autoimmune encephalomyelitis (EAE), a typical model of MS. We determined the levels of irisin in the serum and cerebrospinal fluid in patients with MS. The expression and histological distribution of irisin were determined in EAE. Serum irisin levels in patients with MS and in EAE mice were increased, and the levels of FNDC5/irisin mRNA were decreased in the spinal cord and brain regardless of the onset, peak or chronic phase of EAE. Immunofluorescence staining showed co-localization of irisin and neurones. The levels of irisin fluctuated with disease progression in MS and EAE. Irisin may be involved in the pathological process of MS/EAE.


Assuntos
Encefalomielite Autoimune Experimental , Fibronectinas , Regulação da Expressão Gênica , Esclerose Múltipla , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , Encefalomielite Autoimune Experimental/imunologia , Fibronectinas/líquido cefalorraquidiano , Fibronectinas/imunologia , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/imunologia
11.
Blood ; 133(7): 730-742, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552097

RESUMO

Increased macrophage phagocytosis of antibody-coated platelets, as well as decreased numbers and/or impaired function of CD4+CD25+Foxp3+ regulatory T (Treg) cells, has been shown to participate in the pathogenesis of immune thrombocytopenia (ITP). Low-dose histone deacetylase inhibitors (HDACi's) are anti-inflammatory and immunomodulatory agents that can enhance immunosuppression in graft-versus-host disease by increasing the number and function of Foxp3+ Treg cells, but it is unclear whether they have the potential to promote immune tolerance and platelet release in ITP. In this study, we performed in vitro and in vivo experiments and found that a low-dose HDACi (chidamide) alleviated thrombocytopenia in passive and active murine models of ITP. Further, low-dose HDACi's attenuated macrophage phagocytosis of antibody-coated platelets, stimulated the production of natural Foxp3+ Treg cells, promoted the peripheral conversion of T cells into Treg cells, and restored Treg cell suppression in vivo and in vitro. Finally, we confirmed that low-dose HDACi's could regulate CTLA4 expression in peripheral blood mononuclear cells through modulation of histone H3K27 acetylation. Low-dose HDACi treatment in ITP could be offset by blocking the effect of CTLA4. Therefore, we propose that low-dose chidamide administration has potential as a novel treatment for ITP in the clinic.


Assuntos
Aminopiridinas/administração & dosagem , Benzamidas/administração & dosagem , Tolerância Imunológica/imunologia , Leucócitos Mononucleares/imunologia , Púrpura Trombocitopênica Idiopática/imunologia , Linfócitos T Reguladores/imunologia , Acetilação , Adulto , Idoso , Animais , Antígeno CTLA-4/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Adulto Jovem
12.
J Biol Chem ; 294(13): 4784-4792, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696774

RESUMO

Platelet degranulation, a form of regulated exocytosis, is crucial for hemostasis and thrombosis. Exocytosis in platelets is mediated by SNARE proteins, and in most mammalian cells this process is controlled by Munc18 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 18) proteins. Platelets express all Munc18 paralogs (Munc18-1, -2, and -3), but their roles in platelet secretion and function have not been fully characterized. Using Munc18-1, -2, and -3 conditional knockout mice, here we deleted expression of these proteins in platelets and assessed granule exocytosis. We measured products secreted by each type of platelet granule and analyzed EM platelet profiles by design-based stereology. We observed that the removal of Munc18-2 ablates the release of alpha, dense, and lysosomal granules from platelets, but we found no exocytic role for Munc18-1 or -3 in platelets. In vitro, Munc18-2-deficient platelets exhibited defective aggregation at low doses of collagen and impaired thrombus formation under shear stress. In vivo, megakaryocyte-specific Munc18-2 conditional knockout mice had a severe hemostatic defect and prolonged arterial and venous bleeding times. They were also protected against arterial thrombosis in a chemically induced model of arterial injury. Taken together, our results indicate that Munc18-2, but not Munc18-1 or Munc18-3, is essential for regulated exocytosis in platelets and platelet participation in thrombosis and hemostasis.


Assuntos
Plaquetas/metabolismo , Exocitose , Hemostasia , Proteínas Munc18/metabolismo , Vesículas Secretórias/metabolismo , Trombose/metabolismo , Animais , Plaquetas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas Munc18/genética , Vesículas Secretórias/genética , Vesículas Secretórias/patologia , Trombose/genética , Trombose/patologia
13.
J Exp Bot ; 71(12): 3560-3574, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32338291

RESUMO

The tomato non-ripening (nor) mutant generates a truncated 186-amino-acid protein (NOR186) and has been demonstrated previously to be a gain-of-function mutant. Here, we provide more evidence to support this view and answer the open question of whether the NAC-NOR gene is important in fruit ripening. Overexpression of NAC-NOR in the nor mutant did not restore the full ripening phenotype. Further analysis showed that the truncated NOR186 protein is located in the nucleus and binds to but does not activate the promoters of 1-aminocyclopropane-1-carboxylic acid synthase2 (SlACS2), geranylgeranyl diphosphate synthase2 (SlGgpps2), and pectate lyase (SlPL), which are involved in ethylene biosynthesis, carotenoid accumulation, and fruit softening, respectively. The activation of the promoters by the wild-type NOR protein can be inhibited by the mutant NOR186 protein. On the other hand, ethylene synthesis, carotenoid accumulation, and fruit softening were significantly inhibited in CR-NOR (CRISPR/Cas9-edited NAC-NOR) fruit compared with the wild-type, but much less severely affected than in the nor mutant, while they were accelerated in OE-NOR (overexpressed NAC-NOR) fruit. These data further indicated that nor is a gain-of-function mutation and NAC-NOR plays a significant role in ripening of wild-type fruit.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Immunol ; 200(5): 1718-1726, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29335256

RESUMO

Leukocyte adhesion to vascular endothelium and platelets is an early step in the acute inflammatory response. The initial process is mediated through P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes binding to platelets adhered to endothelium and the endothelium itself via P-selectin. Although these interactions are generally beneficial, pathologic inflammation may occur in undesirable circumstances, such as in acute lung injury (ALI) and ischemia and reperfusion injury. Therefore, the development of novel therapies to attenuate inflammation may be beneficial. In this article, we describe the potential benefit of using a recombinant human vimentin (rhVim) on reducing human leukocyte adhesion to vascular endothelium and platelets under shear stress. The addition of rhVim to whole blood and isolated neutrophils decreased leukocyte adhesion to endothelial and platelet monolayers. Furthermore, rhVim blocked neutrophil adhesion to P-selectin-coated surfaces. Binding assays showed that rhVim binds specifically to P-selectin and not to its counterreceptor, PSGL-1. Finally, in an endotoxin model of ALI in C57BL/6J mice, treatment with rhVim significantly decreased histologic findings of ALI. These data suggest a potential role for rhVim in attenuating inflammation through blocking P-selectin-PSGL-1 interactions.


Assuntos
Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Selectina-P/metabolismo , Proteínas Recombinantes/metabolismo , Vimentina/metabolismo , Animais , Plaquetas/imunologia , Adesão Celular/imunologia , Endotélio Vascular/imunologia , Feminino , Humanos , Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia
15.
Plant J ; 94(6): 1126-1140, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29659108

RESUMO

Chloroplast development and chlorophyll(Chl)metabolism in unripe tomato contribute to the growth and quality of the fruit, however these mechanisms are poorly understood. In this study, we initially investigated seven homeobox-containing transcription factors (TFs) with specific ripening-associated expression patterns using virus-induced gene silencing (VIGS) technology and found that inhibiting the expression of one of these TFs, BEL1-LIKE HOMEODOMAIN11 (SlBEL11), significantly increased Chl levels in unripe tomato fruit. This enhanced Chl accumulation was further validated by generating stable RNA interference (RNAi) transgenic lines. RNA sequencing (RNA-seq) of RNAi-SlBEL11 fruit at the mature green (MG) stage showed that 48 genes involved in Chl biosynthesis, photosynthesis and chloroplast development were significantly upregulated compared with the wild type (WT) fruit. Genomic global scanning for Homeobox TF binding sites combined with RNA-seq differential gene expression analysis showed that 22 of these 48 genes were potential target genes of SlBEL11 protein. These genes included Chl biosynthesis-related genes encoding for protochlorophyllide reductase (POR), magnesium chelatase H subunit (CHLH) and chlorophyllide a oxygenase (CAO), and chloroplast development-related genes encoding for chlorophyll a/b binding protein (CAB), homeobox protein knotted 2 (TKN2) and ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (APRR2-like). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation quantitative polymerase chain reaction (PCR) (ChIP-qPCR) assays were employed to verify that SlBEL11 protein could bind to the promoters for TKN2, CAB and POR. Taken together, our findings demonstrated that SlBEL11 plays an important role in chloroplast development and Chl synthesis in tomato fruit.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Frutas/metabolismo , Proteínas de Homeodomínio/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Cell Biochem ; 120(4): 6718-6728, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592318

RESUMO

BACKGROUND: Monosodium urate (MSU) crystals-induced inflammation is a key initiator in gouty arthritis. Curcumin is an active ingredient possessing anti-inflammatory efficacy. But the underlying mechanism is not fully understood and its effect on gouty arthritis remains elusive. METHODS: We evaluated the effects of curcumin on cell viability in primary rat abdominal macrophages with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Then supernatants of MSU crystals-stimulated cells were collected and subjected to enzyme-linked immunosorbent assay for checking the modulation of curcumin on interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. Meanwhile, cells were analyzed by using Western blot analysis and quantitative polymerase chain reaction (QPCR) to investigate the effects of curcumin on Nod-like receptor 3 (NLRP3) inflammasome/nuclear factor-kappa B (NF-κB) signaling. We also investigated the in vivo efficacy of curcumin with MSU-induced gouty arthritis rat models. RESULTS: Curcumin could reduce MSU crystals-induced IL-1ß and TNF-α in vitro. Western blot analysis and QPCR results revealed that curcumin regulated the production of these cytokines by suppressing the expression of inflammasome key components, including NLRP3, caspase-1. Further studies showed that the suppressive efficacy of curcumin on inflammasome was mediated by inhibiting MSU-induced NF-κB signaling activation. Intraperitoneal administration of curcumin could ameliorate symptoms of MSU-induced gouty arthritis, including the joint circumference, infiltration of neutrophils in knee joints, and production of IL-1ß, TNF-α, and elastase. Western blot analysis revealed that the levels of NLRP3, procaspase-1, caspase-1, pro-IL-1ß, and IL-1ß were downregulated by curcumin in vivo. CONCLUSIONS: These results indicated that curcumin could effectively ameliorate MSU crystal-induced gouty arthritis through NLRP3 inflammasome mediation via inhibiting NF-κB signaling both in vitro and in vivo, suggesting a promising active ingredient for the prevention and treatment of gouty arthritis.


Assuntos
Artrite Gotosa/tratamento farmacológico , Curcumina/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamação/prevenção & controle , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/toxicidade , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/toxicidade , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Proliferação de Células , Citocinas , Feminino , Inflamassomos/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Ratos Wistar , Transdução de Sinais
17.
Parasitol Res ; 118(7): 2247-2255, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31081529

RESUMO

In a previous study, immunoproteomics was used to identify a serine protease inhibitor (TsSPI) of T. spiralis excretory/secretory (ES) proteins that exhibited an inhibitory effect on trypsin enzymatic activity, but the precise role of TsSPI on worm infection and development in its host is not well understood. The objective of the present study was to use RNA interference to ascertain the function of TsSPI in larval invasion and growth. TsSPI-specific small interference RNAs (siRNAs) were delivered to muscle larvae (ML) to silence TsSPI expression by electroporation. Four days after electroporation, the ML transfected with 2 µM siRNA-653 exhibited a 75.75% decrease in TsSPI transcription and a 69.23% decrease in TsSPI expression compared with control ML. Although the silencing of TsSPI expression did not decrease worm viability, it significantly suppressed the larval invasion of intestinal epithelium cells (IEC) (P < 0.01), and the suppression was siRNA dose-dependent (r = 0.981). The infection of mice with siRNA-653-treated ML produced a 63.71% reduction of adult worms and a 72.38% reduction of muscle larvae. In addition, the length of the adults, newborn larvae, and ML and the fecundity of female T. spiralis from mice infected with siRNA-treated ML were obviously reduced relative to those in the control siRNA or PBS groups. These results indicated that the silencing of TsSPI by RNAi suppressed larval invasion and development and decreased female fecundity, further confirming that TsSPI plays a crucial role during the T. spiralis lifecycle and is a promising molecular target for anti-Trichinella vaccines.


Assuntos
Doenças Transmitidas por Alimentos/prevenção & controle , RNA Interferente Pequeno/administração & dosagem , Inibidores de Serina Proteinase/genética , Trichinella spiralis/genética , Triquinelose/prevenção & controle , Animais , Feminino , Fertilidade , Doenças Transmitidas por Alimentos/imunologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Mucosa Intestinal/imunologia , Larva , Camundongos , Camundongos Endogâmicos BALB C , Músculos/parasitologia , Proteômica , Interferência de RNA , Inibidores de Serina Proteinase/metabolismo , Trichinella spiralis/crescimento & desenvolvimento , Trichinella spiralis/imunologia , Trichinella spiralis/patogenicidade , Triquinelose/imunologia , Triquinelose/parasitologia
18.
Stroke ; 49(10): 2536-2540, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30355099

RESUMO

Background and Purpose- VWF (von Willebrand factor) strings mediate spontaneous platelet adhesion in the vascular lumen, which may lead to microthrombi formation and contribute to stroke pathology. However, the mechanism of VWF string attachment at the endothelial surface is unknown. We tested the novel hypothesis that VWF strings are tethered to the endothelial surface through an interaction between extracellular vimentin and the A2 domain of VWF. We further explored the translational value of blocking this interaction in a model of ischemic stroke. Methods- Human endothelial cells and pressurized cerebral arteries were stimulated with histamine to elicit VWF string formation. Recombinant proteins and antibodies were used to block VWF string formation. Mice underwent transient middle cerebral artery occlusion with reperfusion. Just before recanalization, mice were given either vehicle or A2 protein (recombinant VWF A2 domain) to disrupt the vimentin/VWF interaction. Laser speckle contrast imaging was used to monitor cortical perfusion. Results- Pressurized cerebral arteries produced VWF strings following histamine stimulation, which were reduced in arteries from Vim KO (vimentin knockout) mice. VWF string formation was significantly reduced in endothelial cells incubated with A2 protein or antivimentin antibodies. Lastly, A2 protein treatment significantly improved cortical reperfusion after middle cerebral artery occlusion. Conclusions- We provide the first direct evidence of cerebral VWF strings and demonstrate that extracellular vimentin significantly contributes to VWF string formation via A2 domain binding. Lastly, we show that pharmacologically targeting the vimentin/VWF interaction through the A2 domain can promote improved reperfusion after ischemic stroke. Together, these studies demonstrate the critical role of VWF strings in stroke pathology and offer new therapeutic targets for treatment of ischemic stroke.


Assuntos
Plaquetas/metabolismo , Acidente Vascular Cerebral/metabolismo , Vimentina/metabolismo , Fator de von Willebrand/metabolismo , Animais , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , Adesividade Plaquetária/fisiologia , Estresse Mecânico
19.
Microcirculation ; 25(6): e12457, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29701894

RESUMO

OBJECTIVE: Monitoring endogenous platelets during intravital microscopy often involves two approaches: fluorescently labeled antibodies or genetic models of platelet-specific fluorescent protein expression. Due to limited data available on platelet functional changes induced by these methods, we compared functional effects of these methods on platelets. METHODS: Platelet aggregation to collagen and thrombin, and collagen matrix-mediated platelet adhesion/aggregation under flow were tested. We assessed platelets from mice expressing EYFP on platelets (Cre(+)), littermate controls (Cre(-)), C57BL/6 mice, and platelets from vehicle control and x-488 treatment. We utilized intravital microscopy to monitor platelets in vivo using Cre(+) mice and x-488 treatment. RESULTS: Both genetic and antibody-based approaches yielded substantial platelet-specific fluorescence. Platelets from Cre(+) and Cre(-) mice behaved similarly in aggregation and adhesion/aggregation under flow. However, they exhibited significantly enhanced aggregation and higher adhesion/aggregation as compared to platelets from C57BL/6 mice. Compared to vehicle control, x-488 platelet labeling did not induce significant functional changes in vitro. Both methods of platelet labeling provided satisfactory platelet detectability in vivo. CONCLUSIONS: x-488 antibody labeling of platelets induced less alteration of platelet function than genetic approaches under our experimental conditions and seems more suitable for monitoring of endogenous platelets.


Assuntos
Plaquetas/citologia , Corantes Fluorescentes/farmacologia , Microscopia Intravital/métodos , Animais , Anticorpos/farmacologia , Plaquetas/efeitos dos fármacos , Camundongos , Ativação Plaquetária/efeitos dos fármacos , Coloração e Rotulagem/métodos , Coloração e Rotulagem/normas
20.
Haematologica ; 103(7): 1235-1244, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29674495

RESUMO

Platelet degranulation is crucial for hemostasis and may participate in inflammation. Exocytosis in platelets is mediated by SNARE proteins and should be controlled by Munc13 proteins. We found that platelets express Munc13-2 and -4. We assessed platelet granule exocytosis in Munc13-2 and -4 global and conditional knockout (KO) mice, and observed that deletion of Munc13-4 ablates dense granule release and indirectly impairs alpha granule exocytosis. We found no exocytic role for Munc13-2 in platelets, not even in the absence of Munc13-4. In vitro, Munc13-4-deficient platelets exhibited defective aggregation at low doses of collagen. In a flow chamber assay, we observed that Munc13-4 acted as a rate-limiting factor in the formation of thrombi. In vivo, we observed a dose-dependency between Munc13-4 expression in platelets and both venous bleeding time and time to arterial thrombosis. Finally, in a model of allergic airway inflammation, we found that platelet-specific Munc13-4 KO mice had a reduction in airway hyper-responsiveness and eosinophilic inflammation. Taken together, our results indicate that Munc13-4-dependent platelet dense granule release plays essential roles in hemostasis, thrombosis and allergic inflammation.


Assuntos
Plaquetas/metabolismo , Hemostasia/genética , Hipersensibilidade/etiologia , Proteínas de Membrana/genética , Trombose/etiologia , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Exocitose , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Ativação Plaquetária , Vesículas Secretórias/metabolismo , Trombose/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA