Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Renal Physiol ; 305(5): F786-95, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23804456

RESUMO

Plasma urate levels are higher in humans than rodents (240-360 vs. ∼30 µM) because humans lack the liver enzyme uricase. High uricemia in humans may protect against oxidative stress, but hyperuricemia also associates with the metabolic syndrome, and urate and uric acid can crystallize to cause gout and renal dysfunctions. Thus, hyperuricemic animal models to study urate-induced pathologies are needed. We recently generated mice with liver-specific ablation of Glut9, a urate transporter providing access of urate to uricase (LG9KO mice). LG9KO mice had moderately high uricemia (∼120 µM). To further increase their uricemia, here we gavaged LG9KO mice for 3 days with inosine, a urate precursor; this treatment was applied in both chow- and high-fat-fed mice. In chow-fed LG9KO mice, uricemia peaked at 300 µM 2 h after the first gavage and normalized 24 h after the last gavage. In contrast, in high-fat-fed LG9KO mice, uricemia further rose to 500 µM. Plasma creatinine strongly increased, indicating acute renal failure. Kidneys showed tubule dilation, macrophage infiltration, and urate and uric acid crystals, associated with a more acidic urine. Six weeks after inosine gavage, plasma urate and creatinine had normalized. However, renal inflammation, fibrosis, and organ remodeling had developed despite the disappearance of urate and uric acid crystals. Thus, hyperuricemia and high-fat diet feeding combined to induce acute renal failure. Furthermore, a sterile inflammation caused by the initial crystal-induced lesions developed despite the disappearance of urate and uric acid crystals.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Proteínas Facilitadoras de Transporte de Glucose/deficiência , Hiperuricemia/sangue , Animais , Cristalização , Dieta Hiperlipídica , Concentração de Íons de Hidrogênio , Hiperuricemia/etiologia , Inflamação/induzido quimicamente , Inosina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos/deficiência , Ácido Úrico/sangue , Urina/fisiologia
2.
Proc Natl Acad Sci U S A ; 106(36): 15501-6, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706426

RESUMO

Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Homeostase/fisiologia , Nefrite Intersticial/genética , Ácido Úrico/metabolismo , Ácido Úrico/urina , Análise de Variância , Animais , Western Blotting , Hepatócitos/metabolismo , Camundongos , Camundongos Knockout , Néfrons/metabolismo
3.
J Clin Invest ; 111(10): 1555-62, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12750405

RESUMO

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.


Assuntos
Adenilato Quinase/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Veia Porta/fisiologia , Receptor de Insulina/metabolismo , Adenilato Quinase/genética , Tecido Adiposo/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/genética , Desoxiglucose/farmacocinética , Diafragma/metabolismo , Genes Dominantes , Glucose/administração & dosagem , Glucose/farmacocinética , Transportador de Glucose Tipo 4 , Infusões Intravenosas , Insulina/sangue , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Miocárdio/metabolismo , Especificidade de Órgãos , Veia Porta/efeitos dos fármacos , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/metabolismo
4.
Am J Clin Pathol ; 126(5): 691-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17050066

RESUMO

Malaria diagnosis presents a challenge to all laboratories. There is a need for rapid, sensitive, and cost-effective screening on all samples, particularly in areas where malaria is endemic. Response to malaria infection involves an increased monocyte count and production of large activated monocytes. These changes can be detected by volume, conductivity, and scatter (VCS) technology on certain automated blood cell counters (Beckman Coulter, Miami, FL). The SD of the volume of lymphocytes and monocytes demonstrates a significant difference from normal when malaria is present. By using a calculation derived from the SD volume of the lymphocytes and monocytes, herein termed the malaria factor, sensitivity of 98% and specificity 94% were demonstrated for the detection of malaria. Based on this derived discriminant, VCS technology should become a useful tool in the detection of malaria. A flag to indicate the potential presence of malaria could then be generated by the instrument if the user or manufacturer chose to do so.


Assuntos
Diagnóstico por Computador/instrumentação , Diagnóstico por Computador/métodos , Malária/diagnóstico , Parasitemia/diagnóstico , Algoritmos , Tamanho Celular , Citodiagnóstico/instrumentação , Citodiagnóstico/métodos , Diagnóstico Diferencial , Citometria de Fluxo , Humanos , Linfócitos/patologia , Malária/sangue , Malária Falciparum/sangue , Malária Falciparum/diagnóstico , Malária Vivax/sangue , Malária Vivax/diagnóstico , Monócitos/patologia , Parasitemia/patologia , Sensibilidade e Especificidade
5.
J Clin Invest ; 123(4): 1662-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23549084

RESUMO

Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though ß cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr(-/-) mice. Collectively, our data show that glucose sensing by the liver controls ß cell glucose competence and suggest BAs as a potential mechanistic link.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ácidos e Sais Biliares/metabolismo , Glicemia , Células Cultivadas , Colesterol/sangue , Colesterol/metabolismo , Regulação para Baixo , Metabolismo Energético , Fezes/química , Fluordesoxiglucose F18/metabolismo , Técnicas de Inativação de Genes , Glucose/fisiologia , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Homeostase , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Metabolismo dos Lipídeos , Fígado/diagnóstico por imagem , Fígado/fisiopatologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cintilografia , Compostos Radiofarmacêuticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA