Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2307038121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709932

RESUMO

Large-scale online campaigns, malicious or otherwise, require a significant degree of coordination among participants, which sparked interest in the study of coordinated online behavior. State-of-the-art methods for detecting coordinated behavior perform static analyses, disregarding the temporal dynamics of coordination. Here, we carry out a dynamic analysis of coordinated behavior. To reach our goal, we build a multiplex temporal network and we perform dynamic community detection to identify groups of users that exhibited coordinated behaviors in time. We find that i) coordinated communities (CCs) feature variable degrees of temporal instability; ii) dynamic analyses are needed to account for such instability, and results of static analyses can be unreliable and scarcely representative of unstable communities; iii) some users exhibit distinct archetypal behaviors that have important practical implications; iv) content and network characteristics contribute to explaining why users leave and join CCs. Our results demonstrate the advantages of dynamic analyses and open up new directions of research on the unfolding of online debates, on the strategies of CCs, and on the patterns of online influence.

2.
BMC Bioinformatics ; 13 Suppl 4: S22, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22536969

RESUMO

BACKGROUND: The identification of robust lists of molecular biomarkers related to a disease is a fundamental step for early diagnosis and treatment. However, methodologies for biomarker discovery using microarray data often provide results with limited overlap. It has been suggested that one reason for these inconsistencies may be that in complex diseases, such as cancer, multiple genes belonging to one or more physiological pathways are associated with the outcomes. Thus, a possible approach to improve list stability is to integrate biological information from genomic databases in the learning process; however, a comprehensive assessment based on different types of biological information is still lacking in the literature. In this work we have compared the effect of using different biological information in the learning process like functional annotations, protein-protein interactions and expression correlation among genes. RESULTS: Biological knowledge has been codified by means of gene similarity matrices and expression data linearly transformed in such a way that the more similar two features are, the more closely they are mapped. Two semantic similarity matrices, based on Biological Process and Molecular Function Gene Ontology annotation, and geodesic distance applied on protein-protein interaction networks, are the best performers in improving list stability maintaining almost equal prediction accuracy. CONCLUSIONS: The performed analysis supports the idea that when some features are strongly correlated to each other, for example because are close in the protein-protein interaction network, then they might have similar importance and are equally relevant for the task at hand. Obtained results can be a starting point for additional experiments on combining similarity matrices in order to obtain even more stable lists of biomarkers. The implementation of the classification algorithm is available at the link: http://www.math.unipd.it/~dasan/biomarkers.html.


Assuntos
Inteligência Artificial , Neoplasias da Mama/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Algoritmos , Biomarcadores/análise , Genômica , Humanos , Mapas de Interação de Proteínas , Vocabulário Controlado
3.
IEEE Trans Neural Netw Learn Syst ; 29(7): 3270-3276, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622677

RESUMO

The availability of graph data with node attributes that can be either discrete or real-valued is constantly increasing. While existing Kernel methods are effective techniques for dealing with graphs having discrete node labels, their adaptation to nondiscrete or continuous node attributes has been limited, mainly for computational issues. Recently, a few kernels especially tailored for this domain, and that trade predictive performance for computational efficiency, have been proposed. In this brief, we propose a graph kernel for complex and continuous nodes' attributes, whose features are tree structures extracted from specific graph visits. The kernel manages to keep the same complexity of the state-of-the-art kernels while implicitly using a larger feature space. We further present an approximated variant of the kernel, which reduces its complexity significantly. Experimental results obtained on six real-world data sets show that the kernel is the best performing one on most of them. Moreover, in most cases, the approximated version reaches comparable performances to the current state-of-the-art kernels in terms of classification accuracy while greatly shortening the running times.

4.
IEEE Trans Neural Netw Learn Syst ; 26(5): 1115-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25014968

RESUMO

Tree kernels proposed in the literature rarely use information about the relative location of the substructures within a tree. As this type of information is orthogonal to the one commonly exploited by tree kernels, the two can be combined to enhance state-of-the-art accuracy of tree kernels. In this brief, our attention is focused on subtree kernels. We describe an efficient algorithm for injecting positional information into a tree kernel and present ways to enlarge its feature space without affecting its worst case complexity. The experimental results on several benchmark datasets are presented showing that our method is able to reach state-of-the-art performances, obtaining in some cases better performance than computationally more demanding tree kernels.

5.
IEEE Trans Neural Netw ; 20(12): 1938-49, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19846372

RESUMO

The development of neural network (NN) models able to encode structured input, and the more recent definition of kernels for structures, makes it possible to directly apply machine learning approaches to generic structured data. However, the effectiveness of a kernel can depend on its sparsity with respect to a specific data set. In fact, the accuracy of a kernel method typically reduces as the kernel sparsity increases. The sparsity problem is particularly common in structured domains involving discrete variables which may take on many different values. In this paper, we explore this issue on two well-known kernels for trees, and propose to face it by recurring to self-organizing maps (SOMs) for structures. Specifically, we show that a suitable combination of the two approaches, obtained by defining a new class of kernels based on the activation map of a SOM for structures, can be effective in avoiding the sparsity problem and results in a system that can be significantly more accurate for categorization tasks on structured data. The effectiveness of the proposed approach is demonstrated experimentally on two relatively large corpora of XML formatted data and a data set of user sessions extracted from website logs.


Assuntos
Inteligência Artificial , Armazenamento e Recuperação da Informação , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Algoritmos , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA