Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 515(4): 600-606, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178140

RESUMO

Colorectal cancer is one of the leading causes of cancer-related deaths. Due to relapse after current therapy regimens, cancer stem cells (CSCs) are being studied to target this small tumor-initiating population. Anterior gradient 2 (AGR2), a disulfide isomerase protein, is a well-known pro-oncogenic/metastatic oncogene overexpressed in various tumor tissues, including colon cancer. We found that AGR2 was a novel stem cell marker that was regulated by the canonical Wnt/ß-catenin pathway in colon CSCs. AGR2 was highly co-expressed with surface stem cell markers in spheroidal culture. Silencing of AGR2 resulted in decreased sphere-forming ability and down-regulated expression of stem cell markers, whereas the opposite effects were seen with AGR2 overexpression. Moreover, patients with high ß-catenin and AGR2 expression showed lower overall survival than those with low expression. In conclusion, our study describes a novel role for AGR2 as a stem cell marker that is highly regulated by canonical Wnt/ß-catenin signaling in colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mucoproteínas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Inativação Gênica , Células HCT116 , Células HEK293 , Humanos , Metástase Neoplásica , Transdução de Sinais , Esferoides Celulares , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565812

RESUMO

Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor superfamily, are important in whole-body energy metabolism. PPARs are classified into three isoforms, namely, PPARα, ß/δ, and γ. They are collectively involved in fatty acid oxidation, as well as glucose and lipid metabolism throughout the body. Importantly, the three isoforms of PPARs have complementary and distinct metabolic activities for energy balance at a cellular and whole-body level. PPARs also act with other co-regulators to maintain energy homeostasis. When endogenous ligands bind with these receptors, they regulate the transcription of genes involved in energy homeostasis. However, the exact molecular mechanism of PPARs in energy metabolism remains unclear. In this review, we summarize the importance of PPAR signals in multiple organs and focus on the pivotal roles of PPAR signals in cellular and whole-body energy homeostasis.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais , Homeostase/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia
3.
Oxid Med Cell Longev ; 2019: 6492029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223423

RESUMO

Cardiovascular diseases (CVDs) are a major cause of death worldwide. Due to the prevalence of many side effects and incomplete recovery from pharmacotherapies, stem cell therapy is being targeted for the treatment of CVDs. Among the different types of stem cells, endothelial progenitor cells (EPCs) have great potential. However, cellular replicative senescence decreases the proliferation, migration, and overall function of EPCs. Sirtuin 1 (SIRT1) has been mainly studied in the mammalian aging process. MHY2233 is a potent synthetic SIRT1 activator and a novel antiaging compound. We found that MHY2233 increased the expression of SIRT1, and its deacetylase activity thereby decreased expression of the cellular senescence biomarkers, p53, p16, and p21. In addition, MHY2233 decreased senescence-associated beta-galactosidase- (SA-ß-gal-) positive cells and senescence-associated secretory phenotypes (SASPs), such as the secretion of interleukin- (IL-) 6, IL-8, IL-1α, and IL-1ß. MHY2233 treatment protected senescent EPCs from oxidative stress by decreasing cellular reactive oxygen species (ROS) levels, thus enhancing cell survival and function. The angiogenesis, proliferation, and migration of senescent EPCs were enhanced by MHY2233 treatment. Thus, MHY2233 reduces replicative and oxidative stress-induced senescence in EPCs. Therefore, this novel antiaging compound MHY2233 might be considered a potent therapeutic agent for the treatment of age-associated CVDs.


Assuntos
Benzoxazóis/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Sirtuína 1/metabolismo , Senescência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Sangue Fetal/diagnóstico por imagem , Sangue Fetal/metabolismo , Humanos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA