Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38327232

RESUMO

Mucormycosis is a rare disease with scarce diagnostic methods for early intervention. Available strategies employing direct microscopy using calcofluor white-KOH, culture, radiologic, and histopathologic testing often are time-intensive and demand intricate protocols. Nucleic Acid Amplification Test holds promise due to its high sensitivity combined with rapid detection. Loop-mediated isothermal amplification (LAMP) based detection offers an ultrasensitive technique that does not require complicated thermocyclers like in polymerase chain reaction, offering a straightforward means for improving diagnoses as a near-point-of-care test. The study introduces a novel magnetic nanoparticle-based LAMP assay for carryover contaminant capture to reduce false positives. Solving the main drawback of LAMP-based diagnosis techniques. The assay targets the cotH gene, which is invariably specific to Mucorales. The assay was tested with various species of Mucorales, and the limit of detections for Rhizopus microsporus, Lichtheimia corymbifera, Rhizopus arrhizus, Rhizopus homothallicus, and Cunninghamella bertholletiae were 1 fg, 1 fg, 0.1 pg, 0.1 pg, and 0.01 ng, respectively. This was followed by a clinical blindfolded study using whole blood and urine samples from 30 patients diagnosed with Mucormycosis. The assay has a high degree of repeatability and had an overall sensitivity of > 83%. Early Mucormycosis detection is crucial, as current lab tests from blood and urine lack sensitivity and take days for confirmation despite rapid progression and severe complications. Our developed technique enables the confirmation of Mucormycosis infection in < 45 min, focusing specifically on the RT-LAMP process. Consequently, this research offers a viable technique for quickly identifying Mucormycosis from isolated DNA of blood and urine samples instead of invasive tissue samples.


Mucormycosis is a challenging disease to diagnose early. This study introduces a sensitive and rapid diagnostic approach using Loop-mediated isothermal amplification technology. Testing blood and urine samples from 30 patients revealed promising sensitivity and repeatability, indicating its potential for non-invasive diagnosis.


Assuntos
Nanopartículas de Magnetita , Mucorales , Mucormicose , Humanos , Mucormicose/diagnóstico , Mucormicose/veterinária , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/veterinária , Mucorales/genética
2.
J Neuroinflammation ; 16(1): 197, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666079

RESUMO

Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.


Assuntos
Anticonvulsivantes/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Gerenciamento Clínico , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto/métodos , Epilepsia/enzimologia , Previsões , Humanos
3.
ACS Appl Nano Mater ; 4(6): 5871-5882, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37556288

RESUMO

Loop-mediated isothermal amplification (LAMP) is a sensitive, efficient, and rapid nucleic acid amplification technique resulting in a large number of amplicons; however, it suffers from a high incidence of false positives due to carry-over and aerosol. Herein, we report a 10 min nano-capture system that is used in conjunction with a modified reverse transcriptase-LAMP (RT-LAMP) assay for the accurate detection of SARS CoV-2 virus. The nano-capture system employs in-house-designed probe-functionalized magnetic nanoparticles Co2FeAl (cobalt-based Heusler alloy) for efficient capture of contaminating amplicons from the reaction mixture preceding RT-LAMP. The nano-cleaned RT-LAMP assay along with engineered primers successfully detected the presence of 10 copies of SARS CoV-2 virus while completely eliminating the incidence of false positives. The presented contaminant-capture method has been compared with other approaches for elimination of contaminants and was found to be more effective. The insight brought in this work is the design of a rapid nano-capture system that hybridizes with contaminating amplicons (carry-over) with high specificity to enable easy removal from the assay for elimination of false positives. The method has been proven to be successful for RT-LAMP assays in the rapid and highly specific detection of SARS CoV-2, which is currently a major challenge for global health. To the best of our knowledge, this is the first work involving a nano-based cleaning strategy for reliable and rapid diagnosis using isothermal amplification approaches.

4.
J Control Release ; 331: 103-120, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33417986

RESUMO

Breast cancer is one of the leading causes of mortality worldwide being the most common cancer among women. Despite the significant progress obtained during the past years in the understanding of breast cancer pathophysiology, women continue to die from it. Novel tools and technologies are needed to develop better diagnostic and therapeutic approaches, and to better understand the molecular and cellular players involved in the progression of this disease. Typical methods employed by the pharmaceutical industry and laboratories to investigate breast cancer etiology and evaluate the efficiency of new therapeutic compounds are still based on traditional tissue culture flasks and animal models, which have certain limitations. Recently, tumor-on-chip technology emerged as a new generation of in vitro disease model to investigate the physiopathology of tumors and predict the efficiency of drugs in a native-like microenvironment. These microfluidic systems reproduce the functional units and composition of human organs and tissues, and importantly, the rheological properties of the native scenario, enabling precise control over fluid flow or local gradients. Herein, we review the most recent works related to breast tumor-on-chip for disease modeling and drug screening applications. Finally, we critically discuss the future applications of this emerging technology in breast cancer therapeutics and drug development.


Assuntos
Neoplasias da Mama , Microfluídica , Animais , Neoplasias da Mama/tratamento farmacológico , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Microambiente Tumoral
5.
Sci Rep ; 10(1): 2546, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054883

RESUMO

Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E2 (PGE2). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Ciclo-Oxigenase 2/genética , Epilepsia/tratamento farmacológico , Ácido Valproico/administração & dosagem , Adulto , Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Epilepsia/genética , Epilepsia/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
6.
J Control Release ; 303: 67-76, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30980852

RESUMO

Gene and drug delivery mediated by nanostructures has seen tremendous growth over the last decade. However, the efficiency of these delivery approaches needs to be improved for better effects. Amongst various factors, cellular retention is expected to play a critical role. Nanoparticles and nanocomplexes internalized by the cells can be recycled back to the outside through the process of exocytosis. Although it sounds reasonable that the efficiency of these delivery systems should not only depend on their cellular uptake but also on the ability of cells to retain them, the process of cellular retention and exocytosis is relatively less studied in the literature. In the context of gene delivery, both inorganic nanoparticles and organic nanocomplexes are used, but there is limited information on how these nanoparticles and nanocomplexes are recycled and what could be the possible effect of such recycling on the efficiency of these delivery vectors. In this review we try to summarize the existing literature in this area, putative mechanisms involved in recycling of the nanoparticles, methods used to quantify exocytosis and factors affecting exocytosis. The possibility of enhancing cellular retention by blocking recycling pathways as well as the in vivo implications is also discussed here.


Assuntos
Exocitose , Técnicas de Transferência de Genes , Nanopartículas/administração & dosagem , Humanos
7.
ACS Omega ; 4(24): 20547-20557, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31858039

RESUMO

Nonviral gene delivery has seen major progress in the last two decades owing to facile synthesis, low toxicity, and ease of modification of nanocarriers that take nucleic acids to cells and tissues. Gene delivery nanocomplexes need to reach the target locations in significant amounts by overcoming multiple barriers. While the importance of nanocomplex stability, cellular uptake, intracellular trafficking, and nuclear localization has been studied extensively, the role of cellular retention and recycling of these nanocomplexes is less understood in the context of gene delivery. In this study, we used different DNA carriers and made efforts to understand the role played by cellular retention in determining their gene delivery efficiency across multiple cell lines. In addition, we also analyzed whether state of complexation and localization of the nanocomplexes play a role in conjunction with cellular retention. We observed higher transfection efficiencies for nanocomplexes showing better retention, lower unpackaging, and low recycling. Our data also suggests that nanocomplexes made of peptides with terminal cysteine modification show enhanced retention and transfection efficiency compared to their counterparts with no terminal cysteine. Overall, the work highlights myriad of factors to be considered for improving gene delivery efficiency of nanocomplexes.

8.
PLoS One ; 9(4): e95368, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752075

RESUMO

The alcohol oxidase (AOx) cDNA from Aspergillus terreus MTCC6324 with an open reading frame (ORF) of 2001 bp was constructed from n-hexadecane induced cells and expressed in Escherichia coli with a yield of ∼4.2 mg protein g-1 wet cell. The deduced amino acid sequences of recombinant rAOx showed maximum structural homology with the chain B of aryl AOx from Pleurotus eryngii. A functionally active AOx was achieved by incubating the apo-AOx with flavin adenine dinucleotide (FAD) for ∼80 h at 16°C and pH 9.0. The isoelectric point and mass of the apo-AOx were found to be 6.5±0.1 and ∼74 kDa, respectively. Circular dichroism data of the rAOx confirmed its ordered structure. Docking studies with an ab-initio protein model demonstrated the presence of a conserved FAD binding domain with an active substrate binding site. The rAOx was specific for aryl alcohols and the order of its substrate preference was 4-methoxybenzyl alcohol >3-methoxybenzyl alcohol>3, 4-dimethoxybenzyl alcohol > benzyl alcohol. A significantly high aggregation to ∼1000 nm (diameter) and catalytic efficiency (kcat/Km) of 7829.5 min-1 mM-1 for 4-methoxybenzyl alcohol was also demonstrated for rAOx. The results infer the novelty of the AOx and its potential biocatalytic application.


Assuntos
Oxirredutases do Álcool/genética , Aspergillus/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Sequência de Aminoácidos , Aspergillus/genética , Sequência de Bases , Fenômenos Biofísicos , Dicroísmo Circular , DNA Complementar/genética , Eletroforese em Gel Bidimensional , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Amplificação de Genes , Concentração de Íons de Hidrogênio , Cinética , Luz , Microssomos/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mapeamento de Peptídeos , Peptídeos/química , Proteômica , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Espectrometria de Fluorescência , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA