Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Allergy ; 78(1): 156-167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986608

RESUMO

BACKGROUND: Interleukin (IL)-33 is an upstream regulator of type 2 (T2) eosinophilic inflammation and has been proposed as a key driver of some asthma phenotypes. OBJECTIVE: To derive gene signatures from in vitro studies of IL-33-stimulated cells and use these to determine IL-33-associated enrichment patterns in asthma. METHODS: Signatures downstream of IL-33 stimulation were derived from our in vitro study of human mast cells and from public datasets of in vitro stimulated human basophils, type 2 innate lymphoid cells (ILC2), regulatory T cells (Treg) and endothelial cells. Gene Set Variation Analysis (GSVA) was used to probe U-BIOPRED and ADEPT sputum transcriptomics to determine enrichment scores (ES) for each signature according to asthma severity, sputum granulocyte status and previously defined molecular phenotypes. RESULTS: IL-33-activated gene signatures were cell-specific with little gene overlap. Individual signatures, however, were associated with similar signalling pathways (TNF, NF-κB, IL-17 and JAK/STAT signalling) and immune cell differentiation pathways (Th17, Th1 and Th2 differentiation). ES for IL-33-activated gene signatures were significantly enriched in asthmatic sputum, particularly in patients with neutrophilic and mixed granulocytic phenotypes. IL-33 mRNA expression was not elevated in asthma whereas the expression of mRNA for IL1RL1, the IL-33 receptor, was up-regulated in the sputum of severe eosinophilic asthma. The mRNA expression for IL1RAP, the IL1RL1 co-receptor, was greatest in severe neutrophilic and mixed granulocytic asthma. CONCLUSIONS: IL-33-activated gene signatures are elevated in neutrophilic and mixed granulocytic asthma corresponding with IL1RAP co-receptor expression. This suggests incorporating T2-low asthma in anti-IL-33 trials.


Assuntos
Asma , Imunidade Inata , Proteína Acessória do Receptor de Interleucina-1 , Humanos , Asma/diagnóstico , Asma/genética , Células Endoteliais/metabolismo , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Linfócitos/metabolismo , RNA Mensageiro/metabolismo , Escarro , Células Th2
2.
J Allergy Clin Immunol ; 149(1): 89-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33891981

RESUMO

BACKGROUND: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Fármacos Dermatológicos/uso terapêutico , Interleucinas/antagonistas & inibidores , Adulto , Idoso , Asma/genética , Asma/imunologia , Brônquios/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Feminino , Humanos , Imunoglobulina E/sangue , Interleucinas/genética , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Proteoma/efeitos dos fármacos , Índice de Gravidade de Doença , Pele/imunologia , Escarro/imunologia , Transcriptoma/efeitos dos fármacos , Resultado do Tratamento , Interleucina 22
3.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650557

RESUMO

Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.


Assuntos
Asma/metabolismo , Ex-Fumantes , Proteômica/métodos , Fumantes , Escarro/metabolismo , Adulto , Idoso , Asma/complicações , Biomarcadores/metabolismo , Brônquios/patologia , Eosinófilos/metabolismo , Expiração , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Fumar/metabolismo , Espirometria
4.
Clin Transl Med ; 14(9): e70007, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39187935

RESUMO

BACKGROUND: Severe asthma (SA) encompasses several clinical phenotypes with a heterogeneous airway microbiome. We determined the phenotypes associated with a low α-diversity microbiome. METHODS: Metagenomic sequencing was performed on sputum samples from SA participants. A threshold of 2 standard deviations below the mean of α-diversity of mild-moderate asthma and healthy control subjects was used to define those with an abnormal abundance threshold as relative dominant species (RDS). FINDINGS: Fifty-one out of 97 SA samples were classified as RDSs with Haemophilus influenzae RDS being most common (n = 16), followed by Actinobacillus unclassified (n = 10), Veillonella unclassified (n = 9), Haemophilus aegyptius (n = 9), Streptococcus pseudopneumoniae (n = 7), Propionibacterium acnes (n = 5), Moraxella catarrhalis (n = 5) and Tropheryma whipplei (n = 5). Haemophilus influenzae RDS had the highest duration of disease, more exacerbations in previous year and greatest number on daily oral corticosteroids. Hierarchical clustering of RDSs revealed a C2 cluster (n = 9) of highest relative abundance of exclusively Haemophilus influenzae RDSs with longer duration of disease and higher sputum neutrophil counts associated with enrichment pathways of MAPK, NF-κB, TNF, mTOR and necroptosis, compared to the only other cluster, C1, which consisted of 7 Haemophilus influenzae RDSs out of 42. Sputum transcriptomics of C2 cluster compared to C1 RDSs revealed higher expression of neutrophil extracellular trap pathway (NETosis), IL6-transignalling signature and neutrophil activation. CONCLUSION: We describe a Haemophilus influenzae cluster of the highest relative abundance associated with neutrophilic inflammation and NETosis indicating a host response to the bacteria. This phenotype of severe asthma may respond to specific antibiotics.


Assuntos
Asma , Haemophilus influenzae , Neutrófilos , Escarro , Humanos , Asma/microbiologia , Haemophilus influenzae/patogenicidade , Haemophilus influenzae/genética , Escarro/microbiologia , Masculino , Feminino , Adulto , Neutrófilos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Infecções por Haemophilus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA