Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 51(5): 626-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24813055

RESUMO

Apolipoprotein A-I (apoA-I) is an important component of high-density lipoprotein particles that mediates reverse cholesterol transport out of cells by interacting with the ATP-binding cassette transporter 1 (ABCA1). apoA-I has also been shown to attenuate neutrophilic airway inflammation in experimental ovalbumin (OVA)-induced asthma by reducing the expression of granulocyte colony-stimulating factor (G-CSF). Here, we hypothesized that overexpression of the ABCA1 transporter might similarly attenuate OVA-induced neutrophilic airway inflammation. Tie2-human ABCA1 (hABCA1) mice expressing human ABCA1 under the control of the Tie2 promoter, which is primarily expressed by vascular endothelial cells, but can also be expressed by macrophages, received daily intranasal OVA challenges, 5 d/wk for 5 weeks. OVA-challenged Tie2-hABCA1 mice had significant reductions in total bronchoalveolar lavage fluid (BALF) cells that reflected a decrease in neutrophils, as well as reductions in peribronchial inflammation, OVA-specific IgE levels, and airway epithelial thickness. The reduced airway neutrophilia in OVA-challenged Tie2-hABCA1 mice was associated with significant decreases in G-CSF protein levels in pulmonary vascular endothelial cells, alveolar macrophages, and BALF. Intranasal administration of recombinant murine G-CSF to OVA-challenged Tie2-hABCA1 mice for 5 days increased BALF neutrophils to a level comparable to that of OVA-challenged wild-type mice. We conclude that ABCA1 suppresses OVA-induced airway neutrophilia by reducing G-CSF production by vascular endothelial cells and alveolar macrophages. These findings suggest that ABCA1 expressed by vascular endothelial cells and alveolar macrophages may play important roles in attenuating the severity of neutrophilic airway inflammation in asthma.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Animais , Asma/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Colesterol/imunologia , Células Endoteliais/imunologia , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Macrófagos Alveolares/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Ovalbumina/farmacologia , Pneumonia/induzido quimicamente , Regiões Promotoras Genéticas/genética , Receptor TIE-2/genética
2.
Heliyon ; 10(4): e25562, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370171

RESUMO

Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.

3.
Heliyon ; 10(1): e23223, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148798

RESUMO

Macrophages play a crucial role in regulating inflammation and innate immune responses, and their polarization into distinct phenotypes, such as M1 and M2, is involved in various diseases. However, the specific role of CD163, a scavenger receptor expressed by macrophages, in the transformation of M2 to M1 macrophages remains unclear. Here, dexamethasone-induced M2 macrophages were treated with lipopolysaccharide (LPS) to induce the transformation of M2 to M1 macrophages. We found that treatment with lipopolysaccharide (LPS) induced the transformation of M2-like macrophages to an M1-like phenotype, as evidenced by increased mRNA levels of Il1b and Tnf, decreased mRNA levels of Cd206 and Il10, and increased TNF-α secretion. Knockdown of CD163 enhanced the phenotypic features of M1 macrophages, while treatment with recombinant CD163 protein (rmCD163) inhibited the LPS-induced M2-to-M1 transformation. Furthermore, LPS stimulation resulted in the activation of P38, ERK, JNK, and NF-κB P65 signaling pathways, and this activation was increased after CD163 knockdown and suppressed after rmCD163 treatment during macrophage transformation. Additionally, we observed that LPS treatment reduced the expression of CD163 in dexamethasone-induced M2 macrophages, leading to a decrease in the CD163-TWEAK complex and an increase in the interaction between TWEAK and Fn14. Overall, our findings suggest that rmCD163 can inhibit the LPS-induced transformation of M2 macrophages to M1 by disrupting the TWEAK-Fn14 interaction and modulating the MAPK-NF-κB pathway.

4.
Lancet Reg Health West Pac ; 46: 101062, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623390

RESUMO

Background: The public health burden of cardiomyopathies and competency in their management by health agencies in China are not well understood. Methods: This study adopted a multi-stage sampling method for hospital selection. In the first stage, nationwide tertiary hospital recruitment was performed. As a result, 88 hospitals with the consent of the director of cardiology and access to an established electronic medical records system, were recruited. In the second stage, we sampled 66 hospitals within each geographic-economic stratification through a random sampling process. Data on (1) the outpatient and inpatient visits for cardiomyopathies between 2017 and 2021 and (2) the competency in the management of patients with cardiomyopathies, were collected. The competency of a hospital to provide cardiomyopathy care was evaluated using a specifically devised scale. Findings: The outpatient and inpatient visits for cardiomyopathies increased between 2017 and 2021 by 38.6% and 33.0%, respectively. Most hospitals had basic facilities for cardiomyopathy assessment. However, access to more complex procedures was limited, and the integrated management pathway needs improvement. Only 4 (6.1%) of the 66 participating hospitals met the criteria for being designated as a comprehensive cardiomyopathy center, and only 29 (43.9%) could be classified as a primary cardiomyopathy center. There were significant variations in competency between hospitals with different administrative and economic levels. Interpretation: The health burden of cardiomyopathies has increased significantly between 2017 and 2021 in China. Although most tertiary hospitals in China can offer basic cardiomyopathy care, more advanced facilities are not yet universally available. Moreover, inconsistencies in the management of cardiomyopathies across hospitals due to differing administrative and economic levels warrants a review of the nation allocation of medical resources. Funding: This work was supported by the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2023-I2M-1-001) and the National High Level Hospital Clinical Research Funding (2022-GSP-GG-17).

5.
Am J Respir Cell Mol Biol ; 49(6): 902-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23808363

RESUMO

Peptidoglycan recognition protein (Pglyrp) 1 is a pattern-recognition protein that mediates antibacterial host defense. Because we had previously shown that Pglyrp1 expression is increased in the lungs of house dust mite (HDM)-challenged mice, we hypothesized that it might modulate the pathogenesis of asthma. Wild-type and Pglyrp1(-/-) mice on a BALB/c background received intranasal HDM or saline, 5 days/week for 3 weeks. HDM-challenged Pglyrp1(-/-) mice showed decreases in bronchoalveolar lavage fluid eosinophils and lymphocytes, serum IgE, and mucous cell metaplasia, whereas airway hyperresponsiveness was not changed when compared with wild-type mice. T helper type 2 (Th2) cytokines were reduced in the lungs of HDM-challenged Pglyrp1(-/-) mice, which reflected a decreased number of CD4(+) Th2 cells. There was also a reduction in C-C chemokines in bronchoalveolar lavage fluid and lung homogenates from HDM-challenged Pglyrp1(-/-) mice. Furthermore, secretion of CCL17, CCL22, and CCL24 by alveolar macrophages from HDM-challenged Pglyrp1(-/-) mice was markedly reduced. As both inflammatory cells and airway epithelial cells express Pglyrp1, bone marrow transplantation was performed to generate chimeric mice and assess which cell type promotes HDM-induced airway inflammation. Chimeric mice lacking Pglyrp1 on hematopoietic cells, not structural cells, showed a reduction in HDM-induced eosinophilic and lymphocytic airway inflammation. We conclude that Pglyrp1 expressed by hematopoietic cells, such as alveolar macrophages, mediates HDM-induced airway inflammation by up-regulating the production of C-C chemokines that recruit eosinophils and Th2 cells to the lung. This identifies a new family of innate immune response proteins that promotes HDM-induced airway inflammation in asthma.


Assuntos
Asma/etiologia , Citocinas/imunologia , Dermatophagoides pteronyssinus/imunologia , Alérgenos/administração & dosagem , Animais , Antígenos de Dermatophagoides/administração & dosagem , Asma/imunologia , Asma/patologia , Quimiocinas CC/biossíntese , Citocinas/deficiência , Citocinas/genética , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/patologia , Imunidade Inata , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Th2/imunologia , Quimeras de Transplante/imunologia , Regulação para Cima
6.
J Immunol ; 186(1): 576-83, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21115733

RESUMO

New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.


Assuntos
Apolipoproteína A-I/administração & dosagem , Asma/imunologia , Asma/prevenção & controle , Mimetismo Molecular/imunologia , Fragmentos de Peptídeos/administração & dosagem , Pyroglyphidae/imunologia , Administração por Inalação , Animais , Antiasmáticos/administração & dosagem , Antiasmáticos/uso terapêutico , Apolipoproteína A-I/uso terapêutico , Asma/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/prevenção & controle , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos A , Fragmentos de Peptídeos/uso terapêutico
7.
ACS Sens ; 8(2): 893-903, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36757333

RESUMO

The formation of atherosclerotic plaques is the root cause of various cardiovascular diseases (CVDs). Effective CVD interventions thus call for precise identification of the plaques to aid clinical assessment and treatment of such diseases. In this study, we introduced a dual-analyte sequentially activated logic fluorescence reporting system CNN2-B to precisely identify the atherosclerotic plaques in vivo. This probe was achieved by creating a dual-locked fluorescent sensor that permits highly specific and sensitive detection of peroxynitrite and lipid droplets─the two hallmarks of atherosclerosis (AS). The recognition group of the probe removed after reacting with ONOO- and intramolecular charge rearrangement occurred to generate a coumarin derivative structure. This structure had a strong solvent effect; it could recognize lipid droplets (LDs) in cells, thus exhibiting fluorescence without secondary molecular adjustment. The fluorescence was tremendously quenched by double locking; thus, an extreme fluorescence enhancement factor (F/F0) ratio of 365 for CNN2-B was obtained. Importantly, CNN2-B could move from the mitochondria to lipid droplets after being activated. CNN2-B exhibited higher selectivity and signal-to-noise (S/N) ratio than commercial probe hydroxyphenyl fluorescein (HPF). Therefore, atherosclerotic plaques in mouse models were delineated clearly by fluorescence imaging after in situ administration of CNN2-B.


Assuntos
Placa Aterosclerótica , Camundongos , Animais , Corantes Fluorescentes/química , Ácido Peroxinitroso , Gotículas Lipídicas , Imagem Óptica
8.
Heliyon ; 9(12): e22915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076084

RESUMO

Physical activities have beneficial effects on cardiovascular health, although the specific mechanisms are largely unknown. Cardiac resident macrophages (cMacs) and the distribution of their subsets are critical regulators for maintaining cardiovascular health and cardiac functions in both steady and inflammatory states. Therefore, we investigated the subsets of cMacs in mice after low-intensity exercise training to elucidate the exercise-induced dynamic changes of cMacs and the benefits of exercise for the heart. The mice were subjected to treadmill running exercise five days per week for five weeks using a low-intensity exercise training protocol. Low-intensity exercise training resulted in a suppression of body weight gain in mice and a significant increase in the ejection fraction, a parameter that represents the systolic function of the heart. Low-intensity exercise training induced the alterations in the transcriptome of the heart, which are associated with muscle contraction and mitochondrial function. Furthermore, low-intensity exercise training did not alter the number of lymphocyte antigen 6 complex, locus C1 (Ly6c)- cMacs but instead remodeled the distributions of Ly6c- cMac subsets. We observed an increase in the percentage of major histocompatibility complex class II (MHCII)low cMacs and a decrease in the percentage of MHCIIhigh cMacs in the heart after low-intensity exercise training. Therefore, the benefits of exercise for cardiovascular fitness might be associated with the redistribution of cMac subsets and the enhancement of the ejection fraction.

9.
Adv Sci (Weinh) ; 10(12): e2207066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808894

RESUMO

Developing activatable fluorescent probes with superlative fluorescence enhancement factor (F/F0 ) to improve the signal-to-noise (S/N) ratio is still an urgent issue. "AND" molecular logic gates are emerging as a useful tool for enhanced probes selectivity and accuracy. Here, an "AND" logic gate is developed as super-enhancers for designing activatable probes with huge F/F0 and S/N ratio. It utilizes lipid-droplets (LDs) as controllable background input and sets the target analyte as variable input. The fluorescence is tremendously quenching due to double locking, thus an extreme F/F0 ratio of target analyte is obtained. Importantly, this probe can transfer to LDs after a response occurs. The target analyte can be directly visualized through the spatial location without a control group. Accordingly, a peroxynitrite (ONOO- ) activatable probe (CNP2-B) is de novo designed. The F/F0 of CNP2-B achieves 2600 after reacting with ONOO- . Furthermore, CNP2-B can transfer from mitochondria to lipid droplets after being activated. The higher selectivity and S/N ratio of CNP2-B are obtained than commercial probe 3'-(p-hydroxyphenyl) fluorescein (HPFin vitro and in vivo. Therefore, the atherosclerotic plaques at mouse models are delineated clearly after administration with in situ CNP2-B probe gel. Such input controllable "AND" logic gate is envisioned to execute more imaging tasks.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Aterosclerose/diagnóstico por imagem , Corantes Fluorescentes , Diagnóstico por Imagem , Fluorescência
10.
J Ethnopharmacol ; 312: 116444, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061068

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dyslipidemia is the leading risk factor of atherosclerosis (AS). Adipose tissue macrophages (ATMs) can regulate postprandial cholesterol levels via uptake and hydrolyzation of lipids and regulation of macrophage cholesterol efflux (MCE). San-wei-tan-xiang (SWTX) capsule, a Traditional Chinese medicine, exerts clinical benefits in patients with atherosclerotic cardiovascular diseases. AIM OF THE STUDY: This work is aimed to evaluate the chemical ingredients and mechanisms of SWTX in anti-AS. MATERIALS AND METHODS: The chemical ingredients of SWTX identified by liquid chromatography coupled with tandem mass spectrometry were used for network pharmacological analysis. The atheroprotective function of SWTX was evaluated in ApoE-/- mice fed a cholesterol-enriched diet. RESULTS: The chemical ingredients identified in SWTX were predicated to be important for lipid metabolism and AS. Animals studies suggested that SWTX effectively attenuated the atherosclerotic plaque growth, elevated postprandial HDL cholesterol levels, elevated the proportion of Tim4 and CD36-expressed ATMs, and upregulated the uptake of lipid and lysosomal activity in ATMs. SWTX-induced elevation of postprandial HDL cholesterol levels was dependent on increased lysosomal activity, since chloroquine, an inhibitor of lysosomal function, blocked the effect of SWTX. Lastly, some predicated bioactive compounds in SWTX can elevate lysosomal activity in vitro. CONCLUSION: SWTX could attenuate atherosclerotic plaque formation by elevating lysosomal activity and enhancing MCE in ATMs.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , HDL-Colesterol , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/etiologia , Macrófagos , Colesterol/metabolismo , Lisossomos/metabolismo , Apolipoproteínas E
11.
Theranostics ; 13(1): 417-437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593958

RESUMO

Rationale: Previous studies have suggested that myocardial inflammation plays a critical role after ischemic myocardial infarction (MI); however, the underlying mechanisms still need to be fully elucidated. WW domain-containing ubiquitin E3 ligase 1 (WWP1) is considered as an important therapeutic target for cardiovascular diseases due to its crucial function in non-ischemic cardiomyopathy, though it remains unknown whether targeting WWP1 can alleviate myocardial inflammation and ischemic injury post-MI. Methods: Recombinant adeno-associated virus 9 (rAAV9)-cTnT-mediated WWP1 or Kruppel-like factor 15 (KLF15) gene transfer and a natural WWP1 inhibitor Indole-3-carbinol (I3C) were used to determine the WWP1 function in cardiomyocytes. Cardiac function, tissue injury, myocardial inflammation, and signaling changes in the left ventricular tissues were analyzed after MI. The mechanisms underlying WWP1 regulation of cardiomyocyte phenotypes in vitro were determined using the adenovirus system. Results: We found that WWP1 expression was up-regulated in cardiomyocytes located in the infarct border at the early phase of MI and in hypoxia-treated neonatal rat cardiac myocytes (NRCMs). Cardiomyocyte-specific WWP1 overexpression augmented cardiomyocyte apoptosis, increased infarct size and deteriorated cardiac function. In contrast, inhibition of WWP1 in cardiomyocytes mitigated MI-induced cardiac ischemic injury. Mechanistically, WWP1 triggered excessive cardiomyocyte inflammation after MI by targeting KLF15 to catalyze K48-linked polyubiquitination and degradation. Ultimately, WWP1-mediated degradation of KLF15 contributed to the up-regulation of p65 acetylation, and activated the inflammatory signaling of MAPK in ischemic myocardium and hypoxia-treated cardiomyocytes. Thus, targeting of WWP1 by I3C protected against cardiac dysfunction and remodeling after MI. Conclusions: Our study provides new insights into the previously unrecognized role of WWP1 in cardiomyocyte inflammation and progression of ischemic injury induced by MI. Our findings afford new therapeutic options for patients with ischemic cardiomyopathy.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Isquemia Miocárdica , Miocardite , Ratos , Animais , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Apoptose/genética , Ubiquitinação , Inflamação/metabolismo , Hipóxia/metabolismo
12.
J Pharm Anal ; 13(12): 1471-1495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223443

RESUMO

The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.

13.
Cardiol Plus ; 8(2): 82-102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486153

RESUMO

The primary site of infection in COVID-19 exhibit is the respiratory system, but multiple organ systems could be affected. The virus could directly invade cardiomyocytes. Alternatively, cytokine storm could lead to myocardial injury. More importantly, the management of existing cardiovascular diseases must be re-examined in COVID-19 due to, for example, interaction between antiviral agents and with a wide variety of pharmacological agents. The Branch of Cardiovascular Physicians of Chinese Medical Doctor Association organized a panel of experts in cardiovascular and related fields to discuss this important issue, and formulated the "2023 Chinese Expert Consensus on the Impact of COVID-19 on the Management of Cardiovascular Diseases." The Consensus was drafted on the basis of systematic review of existing evidence and diagnosis and treatment experience, and covers three major aspects: myocardial injury caused by COVID-10 and COVID-19 vaccine, the impact of COVID-19 on patients with cardiovascular disease, and the impact of COVID-19 on the cardiovascular system of healthy people, and rehabilitation guidance recommendations. The Consensus involves 11 core clinical issues, including incidence, pathogenesis, clinical manifestations, treatment strategies, prognosis, and rehabilitation. It is our hope that this Consensus will provide a practical guidance to cardiologists in the management of cardiovascular diseases in the new era of COVID-19 pandemic.

14.
Am J Respir Cell Mol Biol ; 47(2): 186-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22427535

RESUMO

Apolipoprotein A-I (apoA-I) is a key component of high-density lipoproteins that mediates reverse cholesterol transport from cells and reduces vascular inflammation. We investigated whether endogenous apoA-I modulates ovalbumin (OVA)-induced airway inflammation in mice. We found that apoA-I expression was significantly reduced in the lungs of OVA-challenged, compared with saline-challenged, wild-type (WT) mice. Next, to investigate the role of endogenous apoA-I in the pathogenesis of OVA-induced airway inflammation, WT and apoA-I(-/-) mice were sensitized by intraperitoneal injections of OVA and aluminum hydroxide, followed by multiple nasal OVA challenges for 4 weeks. OVA-challenged apoA-I(-/-) mice exhibited a phenotype of increased airway neutrophils compared with WT mice, which could be rescued by an administration of a 5A apoA-I mimetic peptide. Multiple pathways promoted neutrophilic inflammation in OVA-challenged apoA-I(-/-) mice, including the up-regulated expression of (1) proinflammatory cytokines (IL-17A and TNF-α), (2) CXC chemokines (CXCL5), (3) vascular adhesion molecules (i.e., vascular cell adhesion molecule-1), and (4) granulocyte colony-stimulating factors (G-CSF). Because concentrations of G-CSF in bronchoalveolar lavage fluid (BALF) were markedly increased in OVA-challenged apoA-I(-/-) mice, we hypothesized that enhanced G-CSF expression may represent the predominant pathway mediating increased neutrophilic inflammation. This was confirmed by the intranasal administration of a neutralizing anti-G-CSF antibody, which significantly reduced BALF neutrophilia by 72% in OVA-challenged apoA-I(-/-) mice, compared with mice that received a control antibody. We conclude that endogenous apoA-I negatively regulates OVA-induced neutrophilic airway inflammation, primarily via a G-CSF-dependent mechanism. Furthermore, these findings suggest that apoA-I may play an important role in modulating the severity of neutrophilic airway inflammation in asthma.


Assuntos
Apolipoproteína A-I/imunologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Neutrófilos/imunologia , Ovalbumina/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Asma/genética , Asma/imunologia , Asma/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocina CXCL5/genética , Quimiocina CXCL5/imunologia , Quimiocina CXCL5/metabolismo , Regulação para Baixo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Inflamação/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
15.
J Lipid Res ; 53(1): 158-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22039582

RESUMO

The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Aterosclerose/prevenção & controle , HDL-Colesterol/sangue , Endotélio Vascular/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Animais , Aorta/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol na Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Transgênicos
16.
Am J Physiol Lung Cell Mol Physiol ; 302(2): L206-15, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22058162

RESUMO

Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (ε2, ε3, and ε4) reflecting single amino acid substitutions at amino acids 112 and 158. The objective of this study was to assess whether the human apoE alleles modify airway responses to repeated nasal HDM challenges. Mice expressing the human apoE ε2 (huApoE2), ε3 (huApoE3), or ε4 (huApoE4) alleles received nasal HDM challenges, and airway responses were compared with mice expressing the endogenous murine apoE gene (muApoE). huApoE3 mice displayed significant reductions in AHR, mucous cell metaplasia, and airway inflammation compared with muApoE mice. The attenuated severity of airway inflammation in huApoE3 mice was associated with reductions in lung mRNA levels of Th2 and Th17 cytokines, as well as chemokines (CCL7, CCL11, CCL24). huApoE4 mice had an intermediate phenotype, with attenuated AHR and IgE production, compared with muApoE mice, whereas airway inflammation and mucous cell metaplasia were not reduced. In contrast, HDM-induced airway responses were not modified in mice expressing the huApoE2 allele. We conclude that the polymorphic huApoE alleles differentially modulate HDM-induced airway disease, which can be stratified, in rank order of increasing disease severity, ε3 < ε4 < ε2. These results raise the possibility that the polymorphic apoE alleles may modify disease severity in human asthma.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Apolipoproteínas E/genética , Asma/genética , Hiper-Reatividade Brônquica/genética , Alelos , Substituição de Aminoácidos , Animais , Apolipoproteínas E/metabolismo , Asma/imunologia , Asma/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Quimiocina CCL11/biossíntese , Quimiocina CCL24/biossíntese , Quimiocina CCL7/biossíntese , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Genótipo , Imunoglobulina E/biossíntese , Inflamação/genética , Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th17/imunologia , Células Th2/imunologia
17.
ACS Nano ; 16(2): 2330-2344, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138084

RESUMO

Utilizing neutrophils (NEs) to target and deliver nanodrugs to inflammation sites has received considerable attention. NEs are involved in the formation and development of thrombosis by transforming into neutrophil extracellular traps (NETs); this indicates that NEs may be a natural thrombolytic drug delivery carrier. However, NEs lack an effective power system to overcome blood flow resistance and enhance targeting efficiency. Herein, we report the application of a urease catalysis micromotor powered NEs nanodrug delivery system to promote thrombolysis and suppress rethrombosis. The urease micromotor powered Janus NEs (UM-NEs) were prepared by immobilizing the enzyme asymmetrically onto the surface of natural NEs and then loading urokinase (UK) coupled silver (Ag) nanoparticles (Ag-UK) to obtain the UM-NEs (Ag-UK) system. Urease catalytic endogenous urea is used to generate thrust by producing ammonia and carbon dioxide, which propels NEs actively targeting the thrombus. The UM-NEs (Ag-UK) can be activated by enriched inflammatory cytokines to release NETs at the thrombosis site, resulting in a concomitant release of Ag-UK. Ag-UK induces thrombolysis to restore vascular recanalization. This urease micromotor-driven NEs drug delivery system can significantly reduce the hemorrhagic side effects, promote thrombolysis, and inhibit rethrombosis with high bioavailability and biosafety, which can be used for the treatment of thrombotic diseases.


Assuntos
Fibrinolíticos , Trombose , Catálise , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Humanos , Neutrófilos , Terapia Trombolítica , Trombose/tratamento farmacológico
18.
Bosn J Basic Med Sci ; 22(3): 340-352, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784266

RESUMO

Dyslipidemia has recently been identified as an important factor in modulating the progression of several health conditions, grouped as cardio-metabolic syndrome and including obesity,insulin resistance, and atherosclerosis. Among multiple factors which regulate the development of cardio-metabolic syndrome, sortilin has been found in multiple cell types, such as adipocyte, hepatocyte, and macrophage, suggesting that sortilin is correlated to the development and the severity of cardio-metabolic syndrome. Consistently, several genome-wide association  (GWAS) and basic experimental research studies are being conducted to find novel gene loci involved in regulating the pathological progression of cardio-metabolic syndrome. According to these data, both SORT1 gene and sortilin protein have an important function in regulating the circulating lipid and glucose metabolism resulting in modulation of disease progression. In this comprehensive review, we summarize the recent research results in regards to sortilin function in modulating the circulating lipid and glucose metabolism. Moreover, we also discuss and analyze the emerging evidence elucidating the potential mechanisms by which sortilin affects synthesis and secretion of lipid and glucose.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Glucose , Metabolismo dos Lipídeos , Síndrome Metabólica , Proteínas Adaptadoras de Transporte Vesicular/genética , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos
19.
Glob Heart ; 17(1): 69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199564

RESUMO

Background: Cardiac rupture is one of the fatal complications of ST-Segment Elevation Myocardial Infarction (STEMI) in the primary percutaneous coronary intervention (PPCI) era. The present study aims to identify risk factors of cardiac rupture among patients suffering from STEMI, treated with early and late PPCI. Methods: This is a multicenter retrospective cohort study involving STEMI patients with cardiac rupture (CR group), matched with STEMI patients without CR (control group) in a 1:5 ratio. They were divided into the early (≤ 6 h) and the late (> 6 h) PCI groups. Multivariable logistic regression was utilized to identify risk factors for cardiac rupture. Results: Seventy-four patients in the CR and 370 in the control group were included. Multivariable regression identified lateral infarction (OR = 11.89, 95% CI 2.22-63.81, p < 0.01) in the early PCI phase as a significant risk factor for cardiac rupture. Thrombolysis in myocardial infarction (TIMI) grade 0-1 (early PCI: OR = 4.16, 95% CI 1.33-13.0, p = 0.01; late PCI: OR = 4.46, 95% CI 1.59-12.54, p < 0.01) was a risk factor for both early and late PCI groups. In contrast, TIMI grade 2 was associated with a higher rupture risk within the late (OR = 16.87, 95% CI 3.83-74.19, p < 0.001) but not for the early (OR = 5.44, 95% CI 0.76-39.07, p = 0.09) PCI groups. STEMI combined with Killip IV was associated with a higher rupture risk for the late PCI group (OR = 1.43, 95% CI 1.03-1.99, p = 0.04). Intra-aortic balloon pump (IABP) was protective against cardiac rupture within early PPCI (OR = 0.18, 95% CI 0.04-0.89, p = 0.04). In contrast, glycoprotein IIb/IIIa inhibitors were associated with lower rupture risks in both the early and late groups (early PCI: OR = 0.38, 95% CI 0.17-0.87, p = 0.02; late PCI: OR = 0.33, 95% CI 0.15-0.75, p < 0.01). Conclusions: No reflow or slow blood flow is associated with a higher risk of cardiac rupture in early and late PCI patients. Glycoprotein IIb/IIIa inhibitors are beneficial in preventing heart rupture, and the use of IABP in early PPCI is also helpful in preventing heart rupture.


Assuntos
Ruptura Cardíaca , Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Glicoproteínas/uso terapêutico , Ruptura Cardíaca/etiologia , Humanos , Infarto do Miocárdio/terapia , Intervenção Coronária Percutânea/efeitos adversos , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Resultado do Tratamento
20.
Front Cell Dev Biol ; 10: 1051102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393845

RESUMO

Transcription factors play multifaceted roles in embryonic development and diseases. PAX1, a paired-box transcription factor, has been elucidated to play key roles in multiple tissues during embryonic development by extensive studies. Recently, an emerging role of PAX1 in cancers was clarified. Herein, we summarize the expression and functions of PAX1 in skeletal system and thymus development, as well as cancer biology and outline its cellular and molecular modes of action and the association of PAX1 mutation or dysregulation with human diseases, thus providing insights for the molecular basis of congenital diseases and cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA