Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3750-3758, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488747

RESUMO

Semiconductor planar nanowire arrays (PNAs) are essential for achieving large-scale device integration. Direct heteroepitaxy of PNAs on a flat substrate is constrained by the mismatch in crystalline symmetry and lattice parameters between the substrate and epitaxial nanowires. This study presents a novel approach termed "self-competitive growth" for heteroepitaxy of CsPbBr3 PNAs on mica. The key to inducing the self-competitive growth of CsPbBr3 PNAs on mica involves restricting the nucleation of CsPbBr3 nanowires in a high-adsorption region, which is accomplished by overlaying graphite sheets on the mica surface. Theoretical calculations and experimental results demonstrate that CsPbBr3 nanowires oriented perpendicular to the boundary of the high-adsorption area exhibit greater competitiveness in intercepting the growth of nanowires in the other two directions, resulting in PNAs with a consistent orientation. Moreover, these PNAs exhibit low-threshold and stable amplified spontaneous emission under one-, two-, and three-photon excitation, indicating their potential for an integrated laser array.

2.
Small ; : e2402786, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966898

RESUMO

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

3.
Angew Chem Int Ed Engl ; 63(11): e202318777, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258990

RESUMO

High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.

4.
Clin Immunol ; 251: 109333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088298

RESUMO

Interactions between immunocytes and Neural Stem Cells (NSCs) in glioblastoma multiforme still remains unclear. Here, microglial cells and NSCs in peri-tumoral tissue were analyzed via single-cell whole-transcriptome sequencing. Results showed that two clusters of putative NSCs (the EGFR+BCAN+ cell cluster, and the FABPT+H19+ cell cluster) exhibited immune-related functions. Two clusters of putative microglia (the XIST+PDK4+ and APOC1+CCL3+ cell clusters) exhibited the function of glial cell activation. The results of ligand receptor network analysis disclosed significant interactions between the APOC1+CCL3+ microglia and the NSCs. Correlation analysis on the overall survival (OS) and relapse-free survival (RFS) with 102 potential molecular targets in the TCGA database showed that a much larger number of molecules were correlated with RFS than with OS (34.31% vs. 8.82%), nine of them were validated in clinical specimens. In conclusion, crosstalk between APOC1+CCL3+ microglia and multiple molecule-labeled NSCs distal to the tumor core play certain roles on the recurrence of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Humanos , Glioblastoma/patologia , Microglia/patologia , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia , Células-Tronco Neurais/patologia , Microambiente Tumoral
5.
Int J Med Sci ; 20(13): 1732-1743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928880

RESUMO

The members of the transmembrane emp24 domain-containing protein (TMED) family are summarized in human as four subfamilies, α (TMED 4, 9), ß (TMED 2), γ (TMED1, 3, 5, 6, 7) and δ (TMED 10), with a total of nine members, which are important regulators of intracellular protein transport and are involved in normal embryonic development, as well as in the pathogenic processes of many human diseases. Here we systematically review the composition, structure and function of TMED family members, and describe the progress of TMED family in human diseases, including malignancies (head and neck tumors, lung cancer, breast cancer, ovarian cancer, endometrial cancer, gastrointestinal tumors, urological tumors, osteosarcomas, etc.), immune responses, diabetes, neurodegenerative diseases, and nonalcoholic fatty liver disease, dilated cardiomyopathy, mucin 1 nephropathy (MKD), and desiccation syndrome (SS). Finally, we discuss and prospect the potential of TMED for disease prognosis prediction and therapeutic targeting, with a view to laying the foundation for therapeutic research based on TMED family causative genes.


Assuntos
Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Gravidez , Feminino , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Small ; 17(39): e2103169, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418298

RESUMO

Solution-processed all-inorganic CsPbX3 perovskites exhibit outstanding optoelectronic properties and are being considered as a promising optical gain medium, with impressive performance in the green and red region. However, the development of CsPbX3 for blue emission is still lagging far behind, owing to difficulties in thin films synthesis and spectral instability subject to light irradiation. Here, a facile vapor anion exchange (VAE) method that enables preparation of blue-emitting perovskite films with both excellent surface morphology and good photo-stability is reported. The mixed-Br/Cl quasi-2D perovskite films show spectrally stable pure blue emission (471 nm) under continuous-wave laser irradiation with power density as high as 81 W cm-2 . Furthermore, optically pumped blue amplified spontaneous emission (ASE) is realized based on the mixed-Br/Cl perovskite films. By changing the duration of VAE treatment, the ASE peak can be tuned from 537 nm down to 475 nm. This work not only presents a facile method to prepare high quality mixed halide Cs-based perovskite films, but also pave the way for further exploration of stable blue perovskite lasing.

7.
Int J Med Sci ; 18(7): 1609-1617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746577

RESUMO

Raddeanin A (RA), an oleanane-type triterpenoid saponin derived from Anemone raddeana Regel, has been found to suppress the viability and metastasis of several cancers, including GBM, through various signaling pathways. However, the mechanisms underlying the anti-GBM properties of RA have not been fully elucidated. Epithelial to mesenchymal transition (EMT) and angiogenesis are important for the genesis and progression of GBM. These two crucial processes can be regulated by multiple molecular, including ß-catenin, which has been demonstrated to act as a pro-tumorigenic molecular. In this study, we aimed to determine whether RA could suppress EMT and angiogenesis by inhibiting the action of ß-catenin in GBM. We found that RA inhibited the proliferation, invasion and migratory properties of GBM cells. RA was also found to have downregulated the expressions of ß-catenin and EMT-related biomarkers (N-cadherin, vimentin, and snail). In addition, the overexpression of ß-catenin reversed the therapeutic effects of RA exerted on the EMT of GBM cells. RA restricted angiogenesis, as shown by the tube formation assay and CAM assay, while it downregulated VEGF levels in HUVECs. Moreover, massive ß-catenin could reverse the suppression of angiogenesis induced by RA. Finally, we demonstrated that RA inhibited tumor growth and prolonged survival time in an intracranial U87 xenograft mouse model. Similar to the results in vitro, RA downregulated the expression of ß-catenin, EMT makers and VEGF, and decreased vessel density in vivo. In summary, our results demonstrated that RA repressed GBM via downregulating ß-catenin-mediated EMT and angiogenesis both in vitro and in vivo.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Saponinas/farmacologia , beta Catenina/genética , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Saponinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
8.
Cancer Sci ; 111(10): 3626-3638, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32589305

RESUMO

Transgenic GFP gene mice are widely used. Given the unique advantages of immunodeficient animals in the field of oncology research, we aim to establish a nude mouse inbred strain that stably expresses enhanced GFP (EGFP) for use in transplanted tumor microenvironment (TME) research. Female C57BL/6-Tg(CAG-EGFP) mice were backcrossed with male BALB/c nude mice for 11 generations. The genotype and phenotype of novel inbred strain Foxn1nu .B6-Tg(CAG-EGFP) were identified by biochemical loci detection, skin transplantation and flow cytometry. PCR and fluorescence spectrophotometry were performed to evaluate the relative expression of EGFP in different parts of the brain. Red fluorescence protein (RFP) gene was stably transfected into human glioma stem cells (GSC), SU3, which were then transplanted intracerebrally or ectopically into Foxn1nu .B6-Tg(CAG-EGFP) mice. Cell co-expression of EGFP and RFP in transplanted tissues was further analyzed with the Live Cell Imaging System (Cell'R, Olympus) and FISH. The inbred strain Foxn1nu .B6-Tg(CAG-EGFP) shows different levels of EGFP expression in brain tissue. The hematological and immune cells of the inbred strain mice were close to those of nude mice. EGFP was stably expressed in multiple sites of Foxn1nu .B6-Tg(CAG-EGFP) mice, including brain tissue. With the dual-fluorescence tracing transplanted tumor model, we found that SU3 induced host cell malignant transformation in TME, and tumor/host cell fusion. In conclusion, EGFP is differentially and widely expressed in brain tissue of Foxn1nu .B6-Tg(CAG-EGFP), which is an ideal model for TME investigation. With Foxn1nu .B6-Tg(CAG-EGFP) mice, our research demonstrated that host cell malignant transformation and tumor/host cell fusion play an important role in tumor progression.


Assuntos
Glioma/genética , Proteínas de Fluorescência Verde/genética , Animais , Encéfalo/fisiologia , Fusão Celular/métodos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Feminino , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Transfecção/métodos , Transplante Heterólogo/métodos , Microambiente Tumoral/genética , Proteína Vermelha Fluorescente
9.
Nature ; 515(7525): 96-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25363773

RESUMO

Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

10.
J Am Chem Soc ; 141(16): 6448-6452, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30964282

RESUMO

We introduce stoichiometry control within both core and shell regions of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) to advance their properties drastically, approaching those of state-of-the-art CdSe-based QDs. The resulting QDs possess near-unity photoluminescence quantum yield, monoexponential decay dynamics, narrow line width, and nonblinking at a single-dot level. Quantum-dot light-emitting diodes (QLEDs) with the InP/ZnSe/ZnS core/shell/shell QDs as emitters exhibit a peak external quantum efficiency of 12.2% and a maximum brightness of >10 000 cd m-2, greatly exceeding those of the Cd/Pb-free QLEDs reported in literature. These results pave the way toward Cd/Pb-free QDs as outstanding optical and optoelectronic materials.

11.
Chemistry ; 25(65): 14767-14770, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31506985

RESUMO

The synthesis of phase-pure, narrow-size-distributed and highly stable Cu2 O nanocrystals is reported, which can be processed as hole-transporting layers (HTLs) in solution-processed optoelectronic devices. The synthesis is based on a thermal decomposition process with a ligand protection strategy. The reactivity of precursor can be tuned by simply modulating the concentration of oleylamine in non-coordinated solvent, resulting in effectively controlling the size and size distribution of Cu2 O nanocrystals. Combined with ligand protection strategy of using lithium stearate and moderate reaction temperature of 170 °C, in situ aggregation of Cu2 O nanocrystals could be inhibited, exhibiting excellent stability in hexane for several months. The resulting phase-pure colloidal Cu2 O particles (after ozone-treatment) were applied as HTLs in polymer light-emitting diodes, the performance of which are comparable to that of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) based devices.

12.
BMC Cancer ; 19(1): 1240, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864321

RESUMO

BACKGROUND AND OBJECTIVE: Tumor angiogenesis is vital for tumor growth. Recent evidence indicated that bone marrow-derived mesenchymal stem cells (BMSCs) can migrate to tumor sites and exert critical effects on tumor growth through direct and/or indirect interactions with tumor cells. However, the effect of BMSCs on tumor neovascularization has not been fully elucidated. This study aimed to investigate whether fusion cells from glioma stem cells and BMSCs participated in angiogenesis. METHODS: SU3-RFP cells were injected into the right caudate nucleus of NC-C57Bl/6 J-GFP nude mice, and the RFP+/GFP+ cells were isolated and named fusion cells. The angiogenic effects of SU3-RFP, BMSCs and fusion cells were compared in vivo and in vitro. RESULTS: Fusion cells showed elevated levels of CD31, CD34 and VE-Cadherin (markers of VEC) as compared to SU3-RFP and BMSCs. The MVD-CD31 in RFP+/GFP+ cell xenograft tumor was significantly greater as compared to that in SU3-RFP xenograft tumor. In addition, the expression of CD133 and stem cell markers Nanog, Oct4 and Sox2 were increased in fusion cells as compared to the parental cells. Fusion cells exhibited enhanced angiogenic effect as compared to parental glioma cells in vivo and in vitro, which may be related to their stem cell properties. CONCLUSION: Fusion cells exhibited enhanced angiogenic effect as compared to parental glioma cells in vivo and in vitro, which may be related to their stem cell properties. Hence, cell fusion may contribute to glioma angiogenesis.


Assuntos
Glioma/irrigação sanguínea , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Fusão Celular , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Glioma/metabolismo , Glioma/patologia , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Microambiente Tumoral
13.
Biochem Biophys Res Commun ; 498(4): 1052-1057, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29551682

RESUMO

Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia , Alicerces Teciduais/química , Linhagem Celular Tumoral , Quitosana/farmacologia , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular , Humanos , Ácido Hialurônico/farmacologia , Esferoides Celulares/química
14.
Biochem Biophys Res Commun ; 495(1): 446-453, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128363

RESUMO

Guanylate binding proteins (GBPs) are interferon-inducible large GTPases and play a crucial role in cell-autonomous immunity. However, the biology function of GBPs in cancer remains elusive. GBP3 is specifically expressed in adult brain. Here we show that GBP3 is highly elevated in human glioma tumors and glioma cell lines. Overexpression of GBP3 dramatically increased glioma cell proliferation whereas silencing GBP3 by RNA interference produced opposite effects. We further showed that GBP3 expression was able to induce sequestosome-1(SQSTM1, also named p62) expression and activate extracellular signal-regulated kinase (ERK1/2). The SQSTM1-ERK1/2 signaling cascade was essential for GBP3-promoted cell growth because depletion of SQSTM1 markedly reduced the phosphorylated ERK1/2 levels and GBP3-mediated cell growth, and inhibition of mitogen-activated protein kinase/ERK kinase abolished GBP3-induced glioma cell proliferation. Consistently, GBP3 overexpression significantly promoted glioma tumor growth in vivo and its expression was inversely correlated with the survival rate of glioma patients. Taken together, these results for the first time suggest that GBP3 contributes to the proliferation of glioma cells via regulating SQSTM1-ERK1/2 pathway, and GBP3 might represent as a new potential therapeutic target against glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Proteínas de Ligação ao GTP/metabolismo , Glioma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Proteínas de Ligação ao GTP/análise , Proteínas de Ligação ao GTP/genética , Glioma/genética , Glioma/patologia , Humanos , Camundongos Nus , Regulação para Cima
15.
J Neurooncol ; 140(2): 199-208, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29995176

RESUMO

Nucleolar and spindle-associated protein (NUSAP1) is a microtubule and chromatin-binding protein that stabilizes microtubules to prevent depolymerization, maintains spindle integrity. NUSAP1 could cross-link spindles into aster-like structures, networks and fibers. It has also been found to play roles in progression of several cancers. However, the potential correlation between NUSAP1 and clinical outcome in patients with glioblastoma multiforme (GBM) remains largely unknown. In the current study, we demonstrated that NUSAP1 was significantly up-regulated in GBM tissues compared with adult non-tumor brain tissues both in a validated cohort and a TCGA cohort. In addition, Kaplan-Meier analysis indicated that patients with high NUSAP1 expression had significantly lower OS (P = 0.0027). Additionally, in the TCGA cohort, NUSAP1 expression was relatively lower in GBM patients within the neural and mesenchymal subtypes compared to other subtypes, and associated with the status of several genetic aberrations such as PTEN deletion and wild type IDH1. The present study provides new insights and evidence that NUSAP1 over-expression was significantly correlated with progression and prognosis of GBM. Furthermore, knockdown of NUSAP1 revealed its regulation on G2/M progression and cell proliferation (both in vitro and in vivo). These data demonstrate that NUSAP1 could serve as a novel prognostic biomarker and a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Estudos de Coortes , Fase G2 , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Proteínas Associadas aos Microtúbulos/genética , Prognóstico , RNA Mensageiro/metabolismo , Regulação para Cima
16.
Chem Soc Rev ; 46(6): 1730-1759, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28245014

RESUMO

Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and properties of charge transporting layers based on oxide nanocrystals hold the key to boosting the efficiency and lifetime of all-solution-processed light-emitting diodes and solar cells, and thereby realizing an unprecedented generation of high-performance, low-cost, large-area and flexible optoelectronic devices. This review aims to bridge two research fields, chemistry of colloidal oxide nanocrystals and interfacial engineering of optoelectronic devices, focusing on the relationship between chemistry of colloidal oxide nanocrystals, processing and properties of charge transporting layers and device performance. Synthetic chemistry of colloidal oxide nanocrystals, ligand chemistry that may be applied to colloidal oxide nanocrystals and chemistry associated with post-deposition treatments are discussed to highlight the ability of optimizing processing and optoelectronic properties of charge transporting layers. Selected examples of solution-processed solar cells and light-emitting diodes with oxide-nanocrystal charge transporting layers are examined. The emphasis is placed on the correlation between the properties of oxide-nanocrystal charge transporting layers and device performance. Finally, three major challenges that need to be addressed in the future are outlined. We anticipate that this review will spur new material design and simulate new chemistry for colloidal oxide nanocrystals, leading to charge transporting layers and solution-processed optoelectronic devices beyond the state-of-the-art.

17.
Nano Lett ; 16(4): 2133-8, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26923682

RESUMO

Solution processability of nanocrystals coated with a stable monolayer of organic ligands (nanocrystal-ligands complexes) is the starting point for their applications, which is commonly measured by their solubility in media. A model described in the other report (10.1021/acs.nanolett.6b00737) reveals that instead of offering steric barrier between inorganic cores, it is the rotation/bending entropy of the C-C σ bonds within typical organic ligands that exponentially enhances solubility of the complexes in solution. Dramatic ligand chain-length effects on the solubility of CdSe-n-alkanoates complexes shall further reveal the power of the model. Subsequently, "entropic ligands" are introduced to maximize the intramolecular entropic effects, which increases solubility of various nanocrystals by 10(2)-10(6). Entropic ligands can further offer means to greatly improve performance of nanocrystals-based electronic and optoelectronic devices.

18.
Biochem Biophys Res Commun ; 465(3): 374-80, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26255203

RESUMO

Wnt/ß-catenin signaling pathway is frequently dysregulated in human tumors and plays a critical role in tumorigenesis; however, the roles of microRNAs in mediating Wnt/ß-catenin pathway are not well understood. Herein, we show that miR-30a-5p is activated by Wnt/ß-catenin pathway through direct binding of ß-catenin/TCF4 to two sites in the promoter region of miR-30a-5p. We also found that miR-30a-5p represses neural cell adhesion molecule (NCAM) expression by directly targeting two sites in the 3' untranslated region (3'-UTR) of NCAM mRNA. Moreover, Wnt/ß-catenin pathway represses NCAM expression in glioma cells, which depends on miR-30a-5p. Finally, we found that miR-30a-5p promotes glioma cell growth invasion by repressing NCAM. Our findings demonstrate a novel Wnt/ß-catenin-miR-30a-5p-NCAM regulatory axis which plays important roles in controlling glioma cell invasion and tumorigenesis.


Assuntos
Glioma/metabolismo , Glioma/patologia , MicroRNAs/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Glioma/genética , Humanos , MicroRNAs/genética , Invasividade Neoplásica
19.
Nano Lett ; 14(6): 3117-23, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24821526

RESUMO

We demonstrate a facile and general strategy based on ligand protection for the synthesis of unstable colloidal nanocrystals by using the synthesis of pure p-type NiO nanocrystals as an example. We find that the introduction of lithium stearate, which is stable in the reaction system and capable of binding to the surface of NiO oxide nanocrystals, can effectively suppress the reactivity of NiO nanocrystals and thus prevent their in situ reduction into Ni. The resulting p-type NiO nanocrystals, a highly demanded hole-transporting and electron-blocking material, are applied to the fabrication of organic solar cells and polymer light-emitting diodes, demonstrating their great potential as an interfacial layer for low-cost and large-area, solution-processed optoelectronic devices.

20.
Zhonghua Zhong Liu Za Zhi ; 37(5): 336-41, 2015 May.
Artigo em Zh | MEDLINE | ID: mdl-26463022

RESUMO

OBJECTIVE: The aim of this study was to clarify whether the fusion of bone marrow mesenchymal stem cells (MSCs) with tumor cells can promote tumor angiogensis. METHODS: Human glioma stem/progenitor cells (GSPCs) (SU3 cells) were transfected with red fluorescent protein (RFP) gene. Bone marrow mesenchymal stem cells (MSCs) were harvested from nude mice with whole-body green fluorescent protein (GFP) gene expression. Then the two kinds of cells were co-cultured in vitro. At the same time SU3-RFP was transplanted into the brain of GFP-expressing nude mice to establish xenograft tumors. The co-cultured cells, GFP/RFP double positive (yellow) cells and blood vessels obtained from the xenograft tumors were observed under fluorescent microscope and laser scanning confocal microscope. RESULTS: After five passages in vitro, MSCs maintained the proliferative activity and highly expressed CD105. CD105 was also expressed in the femurs of GFP-expressing nude mice, tumor cells, blood vessels of SU3 xenograft tumors, and clinical malignant gliomas. When MSCs were co-cultured with SU3-RFP, the ratio of yellow cells co-expressing RFP and GFP was significantly increased after extended time and continuous passages. According to the flow cytometry, yellow cells co-expressing RFP and GFP were 83.7% of the cultured cells. In tissue slices of the xenograft tumors, bundles of yellow vessel-like structure and cross-sectioned yellow vascular wall structures including vascular wall stroma cells were observed with RFP and GFP expression, and were identified as de novo formed vessels derived from fusion of MSCs with SU3-RFP cells. CONCLUSION: Cell fusion occurs between tumor cells and host MSCs and it promotes tumor angiogenesis.


Assuntos
Células da Medula Óssea/fisiologia , Glioma , Células-Tronco Mesenquimais , Neovascularização Patológica , Animais , Comunicação Celular , Fusão Celular , Células Cultivadas , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias , Células-Tronco , Transfecção , Transplante Heterólogo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA