Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(13): 130502, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861090

RESUMO

Quantum teleportation enables the deterministic exchange of qubits via lossy channels. While it is commonly believed that unconditional teleportation requires a preshared entangled qubit pair, here we demonstrate a protocol that is in principle unconditional and requires only a single photon as an ex-ante prepared resource. The photon successively interacts, first, with the receiver and then with the sender qubit memory. Its detection, followed by classical communication, heralds a successful teleportation. We teleport six mutually unbiased qubit states with average fidelity F[over ¯]=(88.3±1.3)% at a rate of 6 Hz over 60 m.

2.
Phys Rev Lett ; 126(25): 253603, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241514

RESUMO

Nondestructive quantum measurements are central for quantum physics applications ranging from quantum sensing to quantum computing and quantum communication. Employing the toolbox of cavity quantum electrodynamics, we here concatenate two identical nondestructive photon detectors to repeatedly detect and track a single photon propagating through a 60 m long optical fiber. By demonstrating that the combined signal-to-noise ratio of the two detectors surpasses each single one by about 2 orders of magnitude, we experimentally verify a key practical benefit of cascaded nondemolition detectors compared to conventional absorbing devices.

3.
Phys Rev Lett ; 122(13): 133603, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012633

RESUMO

Single photons with tailored temporal profiles are a vital resource for future quantum networks. Here we distill them out of custom-shaped laser pulses that reflect from a single atom strongly coupled to an optical resonator. A subsequent measurement on the atom is employed to herald a successful distillation. Out of vacuum-dominated light pulses, we create single photons with fidelity 66(1)%, two-and-more-photon suppression 95.5(6)%, and a Wigner function with negative value -0.125(6). Our scheme applied to state-of-the-art fiber resonators could boost the single-photon fidelity to up to 96%.

4.
Phys Rev Lett ; 118(21): 210503, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598645

RESUMO

We demonstrate entanglement generation of two neutral atoms trapped inside an optical cavity. Entanglement is created from initially separable two-atom states through carving with weak photon pulses reflected from the cavity. A polarization rotation of the photons heralds the entanglement. We show the successful implementation of two different protocols and the generation of all four Bell states with a maximum fidelity of (90±2)%. The protocol works for any distance between cavity-coupled atoms, and no individual addressing is required. Our result constitutes an important step towards applications in quantum networks, e.g., for entanglement swapping in a quantum repeater.

5.
Science ; 371(6529): 614-617, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542133

RESUMO

The big challenge in quantum computing is to realize scalable multi-qubit systems with cross-talk-free addressability and efficient coupling of arbitrarily selected qubits. Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster. Such a distributed architecture, however, requires the capability to execute quantum-logic gates between distant qubits. Here we experimentally realize such a gate over a distance of 60 meters. We employ an ancillary photon that we successively reflect from two remote qubit modules, followed by a heralding photon detection, which triggers a final qubit rotation. We use the gate for remote entanglement creation of all four Bell states. Our nonlocal quantum-logic gate could be extended both to multiple qubits and many modules for a tailor-made multi-qubit computing register.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA