Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 130(25): 2739-2749, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29079582

RESUMO

Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL+ polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Trombopoetina/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Xenoenxertos , Humanos , Interferon Tipo I/metabolismo , Camundongos , Receptores de Trombopoetina/agonistas , Receptores de Trombopoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Mol Ther ; 26(12): 2727-2737, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30309819

RESUMO

Second-generation (2G) chimeric antigen receptors (CARs) targeting CD19 are highly active against B cell malignancies, but it is unknown whether any of the costimulatory domains incorporated in the CAR have superior activity to others. Because CD28 and 4-1BB signaling activate different pathways, combining them in a single third-generation (3G) CAR may overcome the limitations of each individual costimulatory domain. We designed a clinical trial in which two autologous CD19-specific CAR-transduced T cell products (CD19.CARTs), 2G (with CD28 only) and 3G (CD28 and 4-1BB), were infused simultaneously in 16 patients with relapsed or refractory non-Hodgkin's lymphoma. 3G CD19.CARTs had superior expansion and longer persistence than 2G CD19.CARTs. This difference was most striking in the five patients with low disease burden and few circulating normal B cells, in whom 2G CD19.CARTs had limited expansion and persistence and correspondingly reduced area under the curve. Of the 11 patients with measurable disease, three achieved complete responses and three had partial responses. Cytokine release syndrome occurred in six patients but was mild, and no patient required anti-IL-6 therapy. Hence, 3G CD19.CARTs combining 4-1BB with CD28 produce superior CART expansion and may be of particular value when treating low disease burden in patients whose normal B cells are depleted by prior therapy.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Idoso , Terapia Combinada , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/diagnóstico , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/metabolismo , Transplante Autólogo , Resultado do Tratamento
3.
Mol Ther ; 25(9): 2214-2224, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602436

RESUMO

Targeting disialoganglioside (GD2) on neuroblastoma (NB) with T cells expressing a first-generation chimeric antigen receptor (CAR) was safe, but the cells had poor expansion and long-term persistence. We developed a third-generation GD2-CAR (GD2-CAR3) and hypothesized that GD2-CAR3 T cells (CARTs) would be safe and effective. This phase 1 study enrolled relapsed or refractory NB patients in three cohorts. Cohort 1 received CART alone, cohort 2 received CARTs plus cyclophosphamide and fludarabine (Cy/Flu), and cohort 3 was treated with CARTs, Cy/Flu, and a programmed death-1 (PD-1) inhibitor. Eleven patients were treated with CARTs. The infusions were safe, and no dose-limiting toxicities occurred. CARTs were detectable in cohort 1, but the lymphodepletion induced by Cy/Flu increased circulating levels of the homeostatic cytokine interleukin (IL)-15 (p = 0.003) and increased CART expansion by up to 3 logs (p = 0.03). PD-1 inhibition did not further enhance expansion or persistence. Antitumor responses at 6 weeks were modest. We observed a striking expansion of CD45/CD33/CD11b/CD163+ myeloid cells (change from baseline, p = 0.0126) in all patients, which may have contributed to the modest early antitumor responses; the effect of these cells merits further study. Thus, CARTs are safe, and Cy/Flu can further increase their expansion.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva , Neuroblastoma/imunologia , Neuroblastoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adolescente , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Criança , Pré-Escolar , Estudos de Coortes , Terapia Combinada , Citocinas/sangue , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Contagem de Linfócitos , Depleção Linfocítica , Masculino , Terapia de Alvo Molecular , Células Mieloides/metabolismo , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Receptores de Antígenos de Linfócitos T/genética , Condicionamento Pré-Transplante , Resultado do Tratamento , Adulto Jovem
4.
Blood ; 125(26): 4103-13, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25977584

RESUMO

To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103.


Assuntos
Caspase 9/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T/transplante , Adolescente , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Genes Transgênicos Suicidas , Haplótipos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Transtornos Linfoproliferativos/cirurgia , Masculino , Pessoa de Meia-Idade , Compostos Orgânicos/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
5.
Mol Ther ; 24(4): 823-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26708005

RESUMO

Activation of the inducible caspase 9 (iC9) safety gene by a dimerizing drug (chemical inducer of dimerization (CID) AP1903) effectively resolves the symptoms and signs of graft-versus-host disease (GvHD) in haploidentical stem cell transplant (HSCT) recipients. However, after CID treatment, 1% of iC9-T cells remain and can regrow over time; although these resurgent T cells do not cause recurrent GvHD, it remains unclear whether repeat CID treatments are a safe and feasible way to further deplete residual gene-modified T cells should any other adverse effects associated with them occur. Here, we report a patient who received an infusion of haploidentical iC9-T cells after HSCT and subsequently received three treatments with AP1903. There was a mild (grade 2) and transient pancytopenia following each AP1903 administration but no non-hematological toxicity. Ninety five percent of circulating iC9-T cells (CD3(+)CD19(+)) were eliminated after the first AP1903 treatment. Three months later, the residual cells had expanded more than eightfold and had a lower level of iC9 expression. Each repeated AP1903 administration eliminated a diminishing percentage of the residual repopulating cells, but elimination could be enhanced by T-cell activation. These data support the safety and efficiency of repeated CID treatments for persistent or recurring toxicity from T-cell therapies.


Assuntos
Caspase 9/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante , Criança , Relação Dose-Resposta a Droga , Esquema de Medicação , Genes Transgênicos Suicidas , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Ativação Linfocitária , Masculino , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/farmacologia , Transplante de Células-Tronco , Resultado do Tratamento
6.
Mol Ther ; 24(4): 736-45, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26639404

RESUMO

Safety switches are becoming relevant for the clinical translation of T-cell-based immunotherapies. In patients receiving an allogeneic hematopoietic stem cell transplant, the inducible caspase-9 gene (iC9) safety switch expressed by donor-derived T lymphocytes efficiently controls acute graft versus host disease (GvHD). However, in vivo elimination of iC9-T cells by the chemical inducer of dimerization (CID) that activates the iC9 protein is incomplete. To study this effect, we characterized the clonal diversity and dynamics of vector insertion sites (VIS) in iC9-T cells pre- and post-CID administration in four patients who developed GvHD. We identified 3,203 VIS among four patients and followed their in vivo clonal dynamics up to 161 days post-CID. VIS were categorized by their proximity to host genome elements, gene associations, and cis-modulatory relationship to mapped promoters. We found that VIS are preferentially located near open chromatin and promoter regions; furthermore, there was no evidence for selection bias among VIS surviving the CID treatment. The majority of iC9-T cells with high normalized VIS copy number at the time of GvHD onset were eliminated by CID, while iC9-T cells detectable post-CID generally have low normalized VIS copy number. We propose that suboptimal iC9 transgene expression is responsible for the incomplete elimination of iC9-T cells and illustrate here by simple model how cis-modulatory influences of local genome context and T-cell receptor activation status at time of CID treatment contribute to stochastic sparing of iC9-T cells.


Assuntos
Caspase 9/metabolismo , Doença Enxerto-Hospedeiro/tratamento farmacológico , Linfócitos T/metabolismo , Integração Viral , Caspase 9/genética , Cromatina/genética , Genoma Humano , Doença Enxerto-Hospedeiro/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia , Compostos Orgânicos/administração & dosagem , Regiões Promotoras Genéticas , Linfócitos T/transplante , Transgenes , Transplante Homólogo
7.
Blood ; 123(24): 3750-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24782509

RESUMO

Adoptive transfer of T lymphocytes expressing a CD19-specific chimeric antigen receptor (CAR.CD19) induces complete tumor regression in patients with lymphoid malignancies. Although in vivo persistence of CAR-T cells correlates with clinical responses, it remains unknown whether specific cell subsets within the CAR-T-cell product correlate with their subsequent in vivo expansion and persistence. We analyzed 14 patients with B-cell malignancies infused with autologous CAR.CD19-redirected T cells expanded ex vivo using IL-2, and found that their in vivo expansion only correlated with the frequency within the infused product of a CD8(+)CD45RA(+)CCR7(+) subset, whose phenotype is closest to "T-memory stem cells." Preclinical models showed that increasing the frequency of CD8(+)CD45RA(+)CCR7(+) CAR-T cells in the infused line by culturing the cells with IL-7 and IL-15 produced greater antitumor activity of CAR-T cells mediated by increased resistance to cell death, following repetitive encounters with the antigen, while preserving their migration to secondary lymphoid organs. This trial was registered at www.clinicaltrials.gov as #NCT00586391 and #NCT00709033.


Assuntos
Células-Tronco Adultas/fisiologia , Antígenos CD19/genética , Memória Imunológica , Interleucina-15/farmacologia , Interleucina-7/farmacologia , Linfoma/terapia , Linfócitos T/fisiologia , Transferência Adotiva/métodos , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/transplante , Animais , Antígenos CD19/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Terapia Genética/métodos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfoma/genética , Linfoma/imunologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/transplante
8.
Nat Cancer ; 5(6): 880-894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658775

RESUMO

In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .


Assuntos
Imunoterapia Adotiva , Receptor ErbB-2 , Receptores de Antígenos Quiméricos , Sarcoma , Humanos , Sarcoma/terapia , Sarcoma/imunologia , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Idoso , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Depleção Linfocítica/métodos , Estudos Prospectivos , Vidarabina/análogos & derivados , Vidarabina/administração & dosagem , Vidarabina/uso terapêutico , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Resultado do Tratamento
9.
Cancer Discov ; 12(1): 220-235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429321

RESUMO

Clonal hematopoiesis is a prevalent age-related condition associated with a greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A (DNMT3A) are the most common driver of this state. DNMT3A variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations are unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated DNMT3A mutations, and found that 74% were loss-of-function mutations. Half of these variants exhibited reduced protein stability and, as a class, correlated with greater clonal expansion and acute myeloid leukemia development. We investigated the mechanisms underlying the instability using a CRISPR screen and uncovered regulated destruction of DNMT3A mediated by the DCAF8 E3 ubiquitin ligase adaptor. We establish a new paradigm to classify novel variants that has prognostic and potential therapeutic significance for patients with hematologic disease. SIGNIFICANCE: DNMT3A has emerged as the most important epigenetic regulator and tumor suppressor in the hematopoietic system. Our study represents a systematic and high-throughput method to characterize the molecular impact of DNMT3A missense mutations and the discovery of a regulated destruction mechanism of DNMT3A offering new prognostic and future therapeutic avenues.See related commentary by Ma and Will, p. 23.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
DNA Metiltransferase 3A/genética , Leucemia Mieloide Aguda/genética , Ubiquitina-Proteína Ligases/genética , Animais , Células HEK293 , Humanos , Leucócitos Mononucleares , Camundongos , Mutação de Sentido Incorreto
10.
Nat Med ; 26(11): 1686-1690, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046868

RESUMO

Vα24-invariant natural killer T (NKT) cells have shown potent anti-tumor properties in murine tumor models and have been linked to favorable outcomes in patients with cancer. However, low numbers of these cells in humans have hindered their clinical applications. Here we report interim results from all three patients enrolled on dose level 1 in a phase 1 dose-escalation trial of autologous NKT cells engineered to co-express a GD2-specific chimeric antigen receptor (CAR) with interleukin-15 in children with relapsed or resistant neuroblastoma (NCT03294954). Primary and secondary objectives were to assess safety and anti-tumor responses, respectively, with immune response evaluation as an additional objective. We ex vivo expanded highly pure NKT cells (mean ± s.d., 94.7 ± 3.8%) and treated patients with 3 × 106 CAR-NKT cells per square meter of body surface area after lymphodepleting conditioning with cyclophosphamide/fludarabine (Cy/Flu). Cy/Flu conditioning was the probable cause for grade 3-4 hematologic adverse events, as they occurred before CAR-NKT cell infusion, and no dose-limiting toxicities were observed. CAR-NKT cells expanded in vivo, localized to tumors and, in one patient, induced an objective response with regression of bone metastatic lesions. These initial results suggest that CAR-NKT cells can be expanded to clinical scale and safely applied to treat patients with cancer.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Células T Matadoras Naturais/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Receptores de Antígenos Quiméricos/genética , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Criança , Ciclofosfamida/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Imunidade/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Masculino , Células T Matadoras Naturais/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados
11.
Nat Commun ; 11(1): 3549, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669548

RESUMO

Refractory metastatic rhabdomyosarcoma is largely incurable. Here we analyze the response of a child with refractory bone marrow metastatic rhabdomyosarcoma to autologous HER2 CAR T cells. Three cycles of HER2 CAR T cells given after lymphodepleting chemotherapy induces remission which is consolidated with four more CAR T-cell infusions without lymphodepletion. Longitudinal immune-monitoring reveals remodeling of the T-cell receptor repertoire with immunodominant clones and serum autoantibodies reactive to oncogenic signaling pathway proteins. The disease relapses in the bone marrow at six months off-therapy. A second remission is achieved after one cycle of lymphodepletion and HER2 CAR T cells. Response consolidation with additional CAR T-cell infusions includes pembrolizumab to improve their efficacy. The patient described here is a participant in an ongoing phase I trial (NCT00902044; active, not recruiting), and is 20 months off T-cell infusions with no detectable disease at the time of this report.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias Musculares/terapia , Recidiva Local de Neoplasia/terapia , Receptor ErbB-2/imunologia , Rabdomiossarcoma/terapia , Linfócitos T/transplante , Biópsia , Medula Óssea/patologia , Criança , Ensaios Clínicos Fase I como Assunto , Humanos , Masculino , Neoplasias Musculares/imunologia , Neoplasias Musculares/patologia , Recidiva Local de Neoplasia/imunologia , Receptores de Antígenos Quiméricos/imunologia , Indução de Remissão/métodos , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/secundário , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante Autólogo/métodos , Resultado do Tratamento
12.
Endocrinology ; 150(1): 404-12, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18818293

RESUMO

Dickkopf-like1 (Dkkl1) encodes a glycoprotein secreted by postmeiotic male germ cells. We report here that adult Dkkl1-deficient males have elevated sperm counts caused by a decrease in postpubertal spermatocyte apoptosis and display, upon aging, increased local production of testosterone. Molecular analyses identified the Fas death ligand (FasL) as a target for Dkkl1 pro-apoptotic activity in adult mice. Accordingly, adult FasL-deficient gld mice display an increased sperm count and decreased spermatocyte apoptosis phenotype similar to the one observed in Dkkl1-deficient mice. We also show that the elevated testosterone level observed in aging Dkkl1-deficient males is secondary to increased expression in Leydig cells of CYP11A and CYP17, two genes implicated in steroidogenesis. Furthermore, treatment of Leydig cells with Dkkl1 decreases DNA binding and transcriptional activity of steroidogenic factor 1, a pivotal regulator of gene expression in testis. Thus, this study establishes Dkkl1 as a negative regulator of adult testis homeostasis and identifies a novel, Dkkl1/FasL-dependent, regulation that specifically controls the number of postpubertal spermatocytes.


Assuntos
Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Espermatócitos/fisiologia , Testosterona/biossíntese , Animais , Proteína Ligante Fas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação , Contagem de Espermatozoides , Espermatócitos/citologia , Transfecção
13.
Clin Cancer Res ; 25(24): 7340-7350, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31558475

RESUMO

PURPOSE: Current protocols for CD19 chimeric antigen receptor-expressing T cells (CD19.CAR-T cells) require recipients to tolerate preinfusion cytoreductive chemotherapy, and the presence of sufficient target antigen on normal or malignant B cells. PATIENTS AND METHODS: We investigated whether additional stimulation of CD19.CAR-T cells through their native receptors can substitute for cytoreductive chemotherapy, inducing expansion and functional persistence of CD19.CAR-T even in patients in remission of B-cell acute lymphocytic leukemia. We infused a low dose of CD19.CAR-modified virus-specific T cells (CD19.CAR-VST) without prior cytoreductive chemotherapy into 8 patients after allogeneic stem cell transplant. RESULTS: Absent virus reactivation, we saw no CD19.CAR-VST expansion. In contrast, in patients with viral reactivation, up to 30,000-fold expansion of CD19.CAR-VSTs was observed, with depletion of CD19+ B cells. Five patients remain in remission at 42-60+ months. CONCLUSIONS: Dual T-cell receptor and CAR stimulation can thus potentiate effector cell expansion and CAR-target cell killing, even when infusing low numbers of effector cells without cytoreduction.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Linfoma de Células B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/transplante , Adenoviridae/fisiologia , Adolescente , Antígenos CD19/metabolismo , Criança , Pré-Escolar , Vetores Genéticos , Herpesvirus Humano 4/fisiologia , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/virologia , Retroviridae/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Adulto Jovem
14.
J Clin Oncol ; 36(11): 1128-1139, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29315015

RESUMO

Purpose Transforming growth factor-ß (TGF-ß) production in the tumor microenvironment is a potent and ubiquitous tumor immune evasion mechanism that inhibits the expansion and function of tumor-directed responses; therefore, we conducted a clinical study to discover the effects of the forced expression of a dominant-negative TGF-ß receptor type 2 (DNRII) on the safety, survival, and activity of infused tumor-directed T cells. Materials and Methods In a dose escalation study, eight patients with Epstein Barr virus-positive Hodgkin lymphoma received two to 12 doses of between 2 × 107 and 1.5 × 108 cells/m2 of DNRII-expressing T cells with specificity for the Epstein Barr virus-derived tumor antigens, latent membrane protein (LMP)-1 and LMP-2 (DNRII-LSTs). Lymphodepleting chemotherapy was not used before infusion. Results DNRII-LSTs were resistant to otherwise inhibitory concentrations of TGF-ß in vitro and retained their tumor antigen-specific activity. After infusion, the signal from transgenic T cells in peripheral blood increased up to 100-fold as measured by quantitative polymerase chain reaction for the transgene, with a corresponding increase in the frequency of functional LMP-specific T cells. Expansion was not associated with any acute or long-term toxicity. DNRII-LSTs persisted for up to ≥ 4 years. Four of the seven evaluable patients with active disease achieved clinical responses that were complete and ongoing in two patients at > 4 years, including in one patient who achieved only a partial response to unmodified tumor-directed T cells. Conclusion TGF-ß-resistant tumor-specific T cells safely expand and persist in patients with Hodgkin lymphoma without lymphodepleting chemotherapy before infusion. DNRII-LSTs can induce complete responses even in patients with resistant disease. Expression of DNRII may be useful for the many other tumors that exploit this potent immune evasion mechanism.


Assuntos
Terapia Genética/métodos , Doença de Hodgkin/terapia , Imunoterapia Adotiva/instrumentação , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Linfócitos T/transplante , Evasão Tumoral , Adulto , Proliferação de Células , Células Cultivadas , Feminino , Terapia Genética/efeitos adversos , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/metabolismo , Doença de Hodgkin/imunologia , Doença de Hodgkin/metabolismo , Doença de Hodgkin/virologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Recidiva , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento , Microambiente Tumoral , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/metabolismo
15.
Cell Rep ; 21(1): 17-26, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978471

RESUMO

Antigen-independent tonic signaling by chimeric antigen receptors (CARs) can increase differentiation and exhaustion of T cells, limiting their potency. Incorporating 4-1BB costimulation in CARs may enable T cells to resist this functional exhaustion; however, the potential ramifications of tonic 4-1BB signaling in CAR T cells remain unclear. Here, we found that tonic CAR-derived 4-1BB signaling can produce toxicity in T cells via continuous TRAF2-dependent activation of the nuclear factor κB (NF-κB) pathway and augmented FAS-dependent cell death. This mechanism was amplified in a non-self-inactivating gammaretroviral vector through positive feedback on the long terminal repeat (LTR) promoter, further enhancing CAR expression and tonic signaling. Attenuating CAR expression by substitution with a self-inactivating lentiviral vector minimized tonic signaling and improved T cell expansion and anti-tumor function. These studies illuminate the interaction between tonic CAR signaling and the chosen expression platform and identify inhibitory properties of the 4-1BB costimulatory domain that have direct implications for rational CAR design.


Assuntos
Ligante 4-1BB/genética , Antígenos de Neoplasias/genética , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma de Células T do Adulto/genética , Proteínas Mutantes Quiméricas/genética , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Ligante 4-1BB/imunologia , Animais , Antígenos de Neoplasias/imunologia , Morte Celular , Sobrevivência Celular , Gammaretrovirus/genética , Gammaretrovirus/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/patologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas Mutantes Quiméricas/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Transplante de Neoplasias , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/patologia , Linfócitos T/transplante , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Receptor fas/genética , Receptor fas/imunologia
16.
J Clin Invest ; 127(9): 3462-3471, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28805662

RESUMO

BACKGROUND: Targeting CD30 with monoclonal antibodies in Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) has had profound clinical success. However, adverse events, mainly mediated by the toxin component of the conjugated antibodies, cause treatment discontinuation in many patients. Targeting CD30 with T cells expressing a CD30-specific chimeric antigen receptor (CAR) may reduce the side effects and augment antitumor activity. METHODS: We conducted a phase I dose escalation study in which 9 patients with relapsed/refractory HL or ALCL were infused with autologous T cells that were gene-modified with a retroviral vector to express the CD30-specific CAR (CD30.CAR-Ts) encoding the CD28 costimulatory endodomain. Three dose levels, from 0.2 × 108 to 2 × 108 CD30.CAR-Ts/m2, were infused without a conditioning regimen. All other therapy for malignancy was discontinued at least 4 weeks before CD30.CAR-T infusion. Seven patients had previously experienced disease progression while being treated with brentuximab. RESULTS: No toxicities attributable to CD30.CAR-Ts were observed. Of 7 patients with relapsed HL, 1 entered complete response (CR) lasting more than 2.5 years after the second infusion of CD30.CAR-Ts, 1 remained in continued CR for almost 2 years, and 3 had transient stable disease. Of 2 patients with ALCL, 1 had a CR that persisted 9 months after the fourth infusion of CD30.CAR-Ts. CD30.CAR-T expansion in peripheral blood peaked 1 week after infusion, and CD30.CAR-Ts remained detectable for over 6 weeks. Although CD30 may also be expressed by normal activated T cells, no patients developed impaired virus-specific immunity. CONCLUSION: CD30.CAR-Ts are safe and can lead to clinical responses in patients with HL and ALCL, indicating that further assessment of this therapy is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT01316146. FUNDING: National Cancer Institute (3P50CA126752, R01CA131027 and P30CA125123), National Heart, Lung, and Blood Institute (R01HL114564), and Leukemia and Lymphoma Society (LLSTR 6227-08).


Assuntos
Doença de Hodgkin/terapia , Antígeno Ki-1/metabolismo , Linfoma Anaplásico de Células Grandes/terapia , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/citologia , Adulto , Antineoplásicos/química , Brentuximab Vedotin , Antígenos CD28/química , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Doença de Hodgkin/imunologia , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/uso terapêutico , Imunofenotipagem , Linfoma Anaplásico de Células Grandes/imunologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Recidiva Local de Neoplasia , Condicionamento Pré-Transplante , Resultado do Tratamento , Adulto Jovem
17.
J Clin Invest ; 126(7): 2588-96, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27270177

RESUMO

BACKGROUND: Treatment of B cell malignancies with adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan-B cell marker, also depletes normal B cells and causes severe hypogammaglobulinemia. Here, we developed a strategy to target B cell malignancies more selectively by taking advantage of B cell light Ig chain restriction. We generated a CAR that is specific for the κ light chain (κ.CAR) and therefore recognizes κ-restricted cells and spares the normal B cells expressing the nontargeted λ light chain, thus potentially minimizing humoral immunity impairment. METHODS: We conducted a phase 1 clinical trial and treated 16 patients with relapsed or refractory κ+ non-Hodgkin lymphoma/chronic lymphocytic leukemia (NHL/CLL) or multiple myeloma (MM) with autologous T cells genetically modified to express κ.CAR (κ.CARTs). Other treatments were discontinued in 11 of the 16 patients at least 4 weeks prior to T cell infusion. Six patients without lymphopenia received 12.5 mg/kg cyclophosphamide 4 days before κ.CART infusion (0.2 × 108 to 2 × 108 κ.CARTs/m2). No other lymphodepletion was used. RESULTS: κ.CART expansion peaked 1-2 weeks after infusion, and cells remained detectable for more than 6 weeks. Of 9 patients with relapsed NHL or CLL, 2 entered complete remission after 2 and 3 infusions of κ.CARTs, and 1 had a partial response. Of 7 patients with MM, 4 had stable disease lasting 2-17 months. No toxicities attributable to κ.CARTs were observed. CONCLUSION: κ.CART infusion is feasible and safe and can lead to complete clinical responses. TRIAL REGISTRATION: ClinicalTrials.gov NCT00881920. FUNDING: National Cancer Institute (NCI) grants 3P50CA126752 and 5P30CA125123 and Leukemia and Lymphoma Society (LLS) Specialized Centers of Research (SCOR) grant 7018.


Assuntos
Cadeias kappa de Imunoglobulina/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma não Hodgkin/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Adulto , Idoso , Antígenos CD19/imunologia , Ensaio de Imunoadsorção Enzimática , Estudos de Viabilidade , Feminino , Humanos , Imunofenotipagem , Leucemia Linfocítica Crônica de Células B/imunologia , Linfoma não Hodgkin/imunologia , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Retroviridae/metabolismo , Resultado do Tratamento
18.
Mol Cancer Res ; 14(4): 374-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26753621

RESUMO

UNLABELLED: Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole-genome copy-number analyses, targeted sequencing of TP53, and FISH. Array comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy-number aberrations (SCNA). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells, but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, LOH, or copy-neutral LOH in cultured cancer-associated fibroblasts, which are known to promote prostate cancer progression in vivo IMPLICATIONS: The gene expression changes observed in prostate cancer-adjacent stroma and the attendant contribution of the stroma to the development and progression of prostate cancer are not due to frequent or recurrent genomic alterations in the TME.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos/genética , DNA Mitocondrial/genética , Neoplasias da Próstata/genética , Hibridização Genômica Comparativa , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
19.
J Clin Oncol ; 33(15): 1688-96, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25800760

RESUMO

PURPOSE: The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. PATIENTS AND METHODS: We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) -positive sarcoma received escalating doses (1 × 10(4)/m(2) to 1 × 10(8)/m(2)) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). RESULTS: We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 10(5)/m(2)) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 10(6)/m(2) HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). CONCLUSION: This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence.


Assuntos
Neoplasias Ósseas/terapia , Imunoterapia/métodos , Receptor ErbB-2/metabolismo , Sarcoma/terapia , Linfócitos T/imunologia , Adolescente , Adulto , Neoplasias Ósseas/metabolismo , Criança , Feminino , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Dose Máxima Tolerável , Metástase Neoplásica , Tumores Neuroectodérmicos/metabolismo , Tumores Neuroectodérmicos/terapia , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Tomografia por Emissão de Pósitrons , Receptor ErbB-2/genética , Receptores de Antígenos de Linfócitos T/química , Recidiva , Sarcoma/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/terapia , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Adulto Jovem
20.
J Immunother Cancer ; 3: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734008

RESUMO

BACKGROUND: Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was little apparent expansion of these cells in patients. In that study, VSTs were gene-modified on day 19 of culture and we hypothesized that by this time, sufficient T-cell differentiation may have occurred to limit the subsequent proliferative capacity of the transduced T-cells. To facilitate the clinical testing of this hypothesis in a project supported by the NHLBI-PACT mechanism, we developed and optimized a good manufacturing practices (GMP) compliant method for the early transduction of VSTs directed to Epstein-Barr virus (EBV), Adenovirus (AdV) and cytomegalovirus (CMV) using a CAR directed to the tumor-associated antigen disialoganglioside (GD2). RESULTS: Ad-CMVpp65-transduced EBV-LCLs effectively stimulated VSTs directed to all three viruses (triVSTs). Transduction efficiency on day three was increased in the presence of cytokines and high-speed centrifugation of retroviral supernatant onto retronectin-coated plates, so that under optimal conditions up to 88% of tetramer-positive VSTs expressed the GD2.CAR. The average transduction efficiency of early-and late transduced VSTs was 55 ± 4% and 22 ± 5% respectively, and early-transduced VSTs maintained higher frequencies of T cells with central memory or intermediate memory phenotypes. Early-transduced VSTs also had higher proliferative capacity and produced higher levels of TH1 cytokines IL-2, TNF-α, IFN-γ, MIP-1α, MIP-1ß and other cytokines in vitro. CONCLUSIONS: We developed a rapid and GMP compliant method for the early transduction of multivirus-specific T-cells that allowed stable expression of high levels of a tumor directed CAR. Since a proportion of early-transduced CAR-VSTs had a central memory phenotype, they should expand and persist in vivo, simultaneously protecting against infection and targeting residual malignancy. This manufacturing strategy is currently under clinical investigation in patients receiving allogeneic HSCT for relapsed neuroblastoma and B-cell malignancies (NCT01460901 using a GD2.CAR and NCT00840853 using a CD19.CAR).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA