Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Am Chem Soc ; 146(22): 15562-15575, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771742

RESUMO

Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.

2.
Environ Sci Technol ; 58(20): 8748-8759, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709019

RESUMO

Sea spray aerosols (SSA) greatly affect the climate system by scattering solar radiation and acting as seeds for cloud droplet formation. The ecosystems in the Arctic Ocean are rapidly changing due to global warming, and the effects these changes have on the generation of SSA, and thereby clouds and fog formation in this region, are unknown. During the ship-based Arctic Century Expedition, we examined the dependency of forced SSA production on the biogeochemical characteristics of seawater using an on-board temperature-controlled aerosol generation chamber with a plunging jet system. Our results indicate that mainly seawater salinity and organic content influence the production and size distribution of SSA. However, we observed a 2-fold higher SSA production from waters with similar salinity collected north of 81°N compared to samples collected south of this latitude. This variability was not explained by phytoplankton and bacterial abundances or Chlorophyll-a concentration but by the presence of glucose in seawater. The synergic action of sea salt (essential component) and glucose or glucose-rich saccharides (enhancer) accounts for >80% of SSA predictability throughout the cruise. Our results suggest that besides wind speed and salinity, SSA production in Arctic waters is also affected by specific organics released by the microbiota.


Assuntos
Aerossóis , Glucose , Salinidade , Água do Mar , Regiões Árticas , Água do Mar/química , Glucose/metabolismo , Fitoplâncton
3.
Environ Sci Technol ; 56(16): 11189-11198, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35878000

RESUMO

Atmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 µm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira/análise , Aprendizado de Máquina , Tamanho da Partícula , Svalbard
4.
Environ Sci Technol ; 55(1): 468-477, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283494

RESUMO

Critical research is needed regarding harmful algal blooms threatening ecosystem and human health, especially through respiratory routes. Additional complexity comes from the poorly understood factors involved in the physical production of marine aerosols coupled with complex biogeochemical processes at ocean surfaces. Here-by using a marine aerosol generation tank-five bubble-bursting experiments (with contrasting incubation times and, likely, physiological microalgal states) were run to investigate simultaneously the concentrations of the toxins, synthesized by a natural Ostreopsis cf. ovata bloom, in suspension in the water and in the atmosphere. The first two experiments (EXP1-2) were run with moderate levels of O. cf. ovata cell numbers (ca. 105 cells·L-1) and total toxin in suspension (4 × 106 pg·Lwater-1) obtained at an early phase of the bloom. After 0.75-4 h incubation, toxin concentration in the aerosols accounted for 49-69 pg·Lair-1. By striking contrast, three experiments (EXP3-5)-conducted with samples collected two weeks later with higher cell abundances and higher toxin concentration in the seston (respectively, about 1 × 106 cells·L-1 and 2 × 108 pg·Lwater-1) and incubated for 21 h-showed about 15-fold lower atmospheric concentrations (3-4 pg·Lair-1), while important foam accumulation was observed in the water surface in the tank. Offline spectroscopic analysis performed by proton-nuclear magnetic resonance spectroscopy showed that the particulate organic carbon in the water was drastically different from that of bubble-bursting aerosols from the tank experiments-suggesting a selective transfer of organic compounds from seawater into the atmosphere. Overall, the results suggest that aerosol production and diffusion of marine toxins in the atmosphere are regulated by complex interactions between biological processes and air-sea aerosol production dynamics.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Aerossóis , Ecossistema , Humanos , Toxinas Marinhas
5.
Environ Sci Technol ; 54(13): 7807-7817, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32501707

RESUMO

We present shipborne measurements of size-resolved concentrations of aerosol components across ocean waters next to the Antarctic Peninsula, South Orkney Islands, and South Georgia Island, evidencing aerosol features associated with distinct eco-regions. Nonmethanesulfonic acid Water-Soluble Organic Matter (WSOM) represented 6-8% and 11-22% of the aerosol PM1 mass originated in open ocean (OO) and sea ice (SI) regions, respectively. Other major components included sea salt (86-88% OO, 24-27% SI), non sea salt sulfate (3-4% OO, 35-40% SI), and MSA (1-2% OO, 11-12% SI). The chemical composition of WSOM encompasses secondary organic components with diverse behaviors: while alkylamine concentrations were higher in SI air masses, oxalic acid showed higher concentrations in the open ocean air. Our online single-particle mass spectrometry data exclude a widespread source from sea bird colonies, while the secondary production of oxalic acid and sulfur-containing organic species via cloud processing is suggested. We claim that the potential impact of the sympagic planktonic ecosystem on aerosol composition has been overlooked in past studies, and multiple eco-regions act as distinct aerosol sources around Antarctica.


Assuntos
Poluentes Atmosféricos , Ecossistema , Aerossóis/análise , Poluentes Atmosféricos/análise , Regiões Antárticas , Monitoramento Ambiental , Sulfatos
6.
Environ Sci Technol ; 53(18): 10580-10590, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31094516

RESUMO

The radiative balance in the Arctic region is sensitive to in-cloud processes, which principally depend on atmospheric aerosols, including ice nucleating particles (INPs). High temperature INPs (active at ≥-15 °C) are common in the Arctic. While laboratory and limited in situ studies show that the high-temperature active INPs are associated with bioaerosols and biogenic compounds, there is still little quantitative insight into the Arctic biogenic INPs and bioaerosols. We measured concentrations of bioaerosols, bacteria, and biogenic INPs at the Villum Research Station (VRS, Station Nord) in a large number of snow (15) and air (51) samples. We found that INPs active at high subzero temperatures were present both in spring and summer. Air INP concentrations were higher in summer (18 INP m-3 at ≥-10 °C) than in spring (<4 INP m-3 at ≥-10 °C), when abundant INPs were found in snowfall (1.4 INP mL-1 at ≥-10 °C). Also, in summer, a significantly higher number of microbial and bacterial cells were present compared to the spring. A large proportion (60%-100%) of INPs that were active between -6 °C and -20 °C could be deactivated by heating to 100 °C, which was indicative of their predominantly proteinaceous origin. In addition, there was a significant linear regression between the summer air concentrations of INPs active at ≥-10 °C and air concentrations of bacterial-marker-genes (p < 0.0001, R2 = 0.999, n = 6), pointing at bacterial cells as the source of high-temperature active INPs. In conclusion, the majority of INPs was of proteinaceous, and possibly of bacterial, origin and was found in air during summer and in snowfall during springtime.


Assuntos
Gelo , Neve , Aerossóis , Regiões Árticas , Estações do Ano
7.
Environ Sci Technol ; 53(15): 8621-8630, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310508

RESUMO

The sources of primary and secondary aerosols in the Arctic are still poorly known. A number of surface seawater samples-with varying degrees of Arctic riverine and sea ice influences-were used in a sea spray generation chamber to test them for their potential to produce sea spray aerosols (SSA) and cloud condensation nuclei (CCN). Our interdisciplinary data showed that both sea salt and organic matter (OM) significantly influenced the SSA production. The number concentration of SSA in the coastal samples was negatively correlated with salinity and positively correlated with a number of OM tracers, including dissolved and chromophoric organic carbon (DOC, CDOM), marine microgels and chlorophyll a (Chl-a) but not for viral and bacterial abundances; indicating that OM of riverine origin enhances primary aerosol production. When all samples were considered, transparent exopolymer particles (TEP) were found to be the best indicator correlating positively with the ratio number concentration of SSA/salinity. CCN efficiency was not observed to differ between the SSA from the various samples, despite differences in organic characteristics. It is suggested that the large amount of freshwater from river runoff have a substantial impact on primary aerosols production mechanisms, possibly affecting the cloud radiative forcing.


Assuntos
Clorofila A , Água do Mar , Aerossóis , Regiões Árticas , Rios
8.
Environ Sci Technol ; 50(8): 4212-20, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27002272

RESUMO

Atmospheric iron aerosol is a bioavailable essential nutrient playing a role in oceanic productivity. Using aerosol time-of-flight mass spectrometry (ATOFMS), the particle size (0.3-1.5 µm), chemical composition and mixing state of Fe-containing particles collected at two European urban sites (London and Barcelona) were characterized. Out of the six particle types accounting for the entire Fe-aerosol population, that arising from long-range transport (LRT) of fine Fe-containing particles (Fe-LRT, 54-82% across the two sites) was predominant. This particle type was found to be internally mixed with nitrate and not with sulfate, and likely mostly associated with urban traffic activities. This is in profound contrast with previous studies carried out in Asia, where the majority of iron-containing particles are mixed with sulfate and are of coal combustion origin. Other minor fine iron aerosol sources included mineral dust (8-11%), traffic brake wear material (1-17%), shipping/oil (1-6%), biomass combustion (4-13%) and vegetative debris (1-3%). Overall, relative to anthropogenic Asian Fe-sulfate dust, anthropogenic European dust internally mixed with additional key nutrients such as nitrate is likely to play a different role in ocean global biogeochemical cycles.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Ferro/análise , Nitratos/análise , Atmosfera/análise , Carvão Mineral , Poeira/análise , Monitoramento Ambiental/métodos , Londres , Espectrometria de Massas/métodos , Tamanho da Partícula , Navios , Espanha , Sulfatos/análise
9.
Environ Sci Technol ; 49(6): 3330-40, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25695365

RESUMO

Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Veículos Automotores , Material Particulado/análise , Aerossóis/análise , Compostos de Amônio/análise , Carbono/análise , Análise por Conglomerados , Monitoramento Ambiental/estatística & dados numéricos , Humanos , Londres , Espectrometria de Massas , Compostos Orgânicos/análise , Tamanho da Partícula , Urbanização
10.
Sci Total Environ ; 878: 162969, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36958547

RESUMO

Sea spray aerosol (SSA) particles strongly influence clouds and climate but the potential impact of ocean microbiota on SSA fluxes is still a matter of active research. Here-by means of in situ ship-borne measurements-we explore simultaneously molecular-level chemical properties of organic matter (OM) in oceans, sea ice, and the ambient PM2.5 aerosols along a transect of 15,000 km from the western Pacific Ocean (36°13'N) to the Southern Ocean (75°15'S). By means of orbitrap mass spectrometry and optical characteristics, lignin-like material (24 ± 5 %) and humic material (57 ± 8 %) were found to dominate the pelagic Pacific Ocean surface, while intermediate conditions were observed in the Pacific-Southern Ocean waters. In the marine atmosphere, we found a gradient of features in the aerosol: lignin-like material (31 ± 9 %) dominating coastal areas and the pelagic Pacific Ocean, whereas lipid-like (23 ± 16 %) and protein-like (11 ± 10 %) OM controlled the sympagic Southern Ocean (sea ice-influence). The results of this study showed that the OM composition in the ocean, which changes with latitude, affects the OM in aerosol compositions in the atmosphere. This study highlights the importance of the global-scale OM monitoring of the close interaction between the ocean, sea ice, and the atmosphere. Sympagic primary marine aerosols in polar regions must be treated differently from other pelagic-type oceans.

11.
Sci Total Environ ; 807(Pt 2): 150866, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627898

RESUMO

The impact of inorganic salts and organic matter (OM) on the production of primary marine aerosols is still under debate. To constrain their impact, we investigated primary aerosols generated by a sea-spray generator chamber using surface water samples from rivers, estuaries, and seas that were collected along salinity gradients in two temperate Korean coastal systems and one Arctic coastal system. Salinity values showed an increasing trend along the river-estuary-coastal water transition, indicating the lowest amount of inorganic salts in the river but the highest amount in the sea. In river samples, the lowest number concentration of primary aerosol particles (1.01 × 103 cm-3) was observed at the highest OM content, suggesting that low salinity controls aerosol production. Moreover, the number concentration of primary aerosols increased drastically in estuarine (1.13 × 104 cm-3) and seawater (1.35 × 104 cm-3) samples as the OM content decreased. Our results indicate that inorganic salts associated with increasing salinity play a much larger role than OM in aerosol production in river-dominated coastal systems. Laboratory studies using NaCl solution supported the conclusion that inorganic salt is a critical factor in modulating the particles produced from river water and seawater. Accordingly, this study highlights that inorganic salts are a critical factor in modulating the production of primary marine aerosols.


Assuntos
Rios , Água do Mar , Aerossóis , Água Doce , Água
12.
Sci Total Environ ; 831: 154772, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364145

RESUMO

Within the Southern Ocean, the greatest warming is occurring on the Antarctic Peninsula (AP) where clear cryospheric and biological consequences are being observed. Antarctic coastal systems harbour a high diversity of marine and terrestrial ecosystems heavily influenced by Antarctic seaweeds (benthonic macroalgae) and bird colonies (mainly penguins). Primary sea spray aerosols (SSA) formed by the outburst of bubbles via the sea-surface microlayer depend on the organic composition of the sea water surface. In order to gain insight into the influence of ocean biology and biogeochemistry on atmospheric aerosol, we performed in situ laboratory aerosol bubble chamber experiments to study the effect of different leachates of biogenic material - obtained from common Antarctic seaweeds as well as penguin guano - on primary SSA. The addition of different leachate materials on a seawater sample showed a dichotomous effect depending on the leachate material added - either suppressing (up to 52%) or enhancing (22-88%) aerosol particle production. We found high ice nucleating particle number concentrations resulting from addition of guano leachate material. Given the evolution of upper marine polar coastal ecosystems in the AP, further studies on ocean-atmosphere coupling are needed in order to represent the currently poorly understood climate feedback processes.


Assuntos
Alga Marinha , Spheniscidae , Partículas e Gotas Aerossolizadas , Aerossóis/química , Animais , Regiões Antárticas , Ecossistema , Água do Mar/química
13.
Environ Sci Technol ; 45(13): 5522-8, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21650158

RESUMO

Particle number concentration data have been collected on a very busy road in central London (Marylebone Road). Continuous size distributions from 15 nm to 10 µm diameter, collected over 21 days, were analyzed using positive matrix factorization which identified 10 factors, five of which were observed to make major contributions (greater than 8%) to either the total number or volume of particulate matter. The sources associated with each factor were identified from the size distribution, directional association, diurnal variation and their relationship to meteorological pollution and traffic volume variables. The factors related to the emissions on Marylebone Road accounted for 40.5% of particle volume and 71.9% of particle number. These comprised nucleation mode exhaust particles (3.6% of total volume and 27.4% of total number), solid mode exhaust particles (18.8% of total volume and 38.0% of total number), brake dust (13.7% of total volume and 1.7% of total number and resuspension (4.4% of total volume and 4.8% of total number). Another six factors were associated with the urban background accounting for 59.5% of total volume and 28.2% of total particle number count. The method is extremely successful at separating the components of on-road emissions including brake wear and resuspension.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise , Londres , Análise de Componente Principal
14.
Environ Sci Technol ; 44(21): 8295-301, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20886897

RESUMO

Firework events are capable of inducing particulate matter (PM) episodes that lead to exceedances of regulatory limit values. As short-term peaks in ambient PM concentration have been associated with negative impacts on respiratory and cardiovascular health, we performed a detailed study of the consequences of firework events in London on ambient air quality and PM composition. These changes were further related to the oxidative activity of daily PM samples by assessing their capacity to drive the oxidation of physiologically important lung antioxidants including ascorbate, glutathione and urate (oxidative potential, OP). Twenty-four hour ambient PM samples were collected at the Marylebone Road sampling site in Central London over a three week period, including two major festivals celebrated with pyrotechnic events: Guy Fawkes Night and Diwali. Pyrotechnic combustion events were characterized by increased gas phase pollutants levels (NO(x) and SO(2)), elevated PM mass concentrations, and trace metal concentrations (specifically Sr, Mg, K, Ba, and Pb). Relationships between NO(x), benzene, and PM(10) were used to apportion firework and traffic source fractions. A positive significant relationship was found between PM oxidative burden and individual trace metals associated with each of these apportioned source fractions. The level of exposure to each source fraction was significantly associated with the total OP. The firework contribution to PM total OP, on a unit mass basis, was greater than that associated with traffic sources: a 1 µg elevation in firework and traffic PM fraction concentration was associated with a 6.5 ± 1.5 OP(T) µg(-1) and 5.2 ± 1.4 OP(T) µg(-1) increase, respectively. In the case of glutathione depletion, firework particulate OP (3.5 ± 0.8 OP(GSH) µg(-1)) considerably exceeded that due to traffic particles (2.2 ± 0.8 OP(GSH) µg(-1)). Therefore, in light of the elevated PM concentrations caused by firework activity and the increased oxidative activity of this PM source, there is value in examining if firework derived PM is related to acute respiratory outcomes.


Assuntos
Poluentes Atmosféricos/análise , Substâncias Explosivas/efeitos adversos , Estresse Oxidativo , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Metais/análise , Óxido Nítrico/análise , Material Particulado/toxicidade
15.
Life (Basel) ; 10(7)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635627

RESUMO

We explored how changes of viral abundance and community composition among four contrasting regions in the Southern Ocean relied on physicochemical and microbiological traits. During January-February 2015, we visited areas north and south of the South Orkney Islands (NSO and SSO) characterized by low temperature and salinity and high inorganic nutrient concentration, north of South Georgia Island (NSG) and west of Anvers Island (WA), which have relatively higher temperatures and lower inorganic nutrient concentrations. Surface viral abundance (VA) was highest in NSG (21.50 ± 10.70 × 106 viruses mL-1) and lowest in SSO (2.96 ± 1.48 × 106 viruses mL-1). VA was positively correlated with temperature, prokaryote abundance and prokaryotic heterotrophic production, chlorophyll a, diatoms, haptophytes, fluorescent organic matter, and isoprene concentration, and was negatively correlated with inorganic nutrients (NO3-, SiO42-, PO43-), and dimethyl sulfide (DMS) concentrations. Viral communities determined by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) were grouped according to the sampling location, being more similar within them than among regions. The first two axes of a canonical correspondence analysis, including physicochemical (temperature, salinity, inorganic nutrients-NO3-, SiO42-, and dimethyl sulfoniopropionate -DMSP- and isoprene concentrations) and microbiological (chlorophyll a, haptophytes and diatom, and prokaryote abundance and prokaryotic heterotrophic production) factors accounted for 62.9% of the variance. The first axis, temperature-related, accounted for 33.8%; the second one, salinity-related, accounted for 29.1%. Thus, different environmental situations likely select different hosts for viruses, leading to distinct viral communities.

16.
Environ Sci Pollut Res Int ; 26(31): 32114-32127, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494852

RESUMO

Source apportionment of atmospheric PM1 is important for air quality control, especially in urban areas where high mass concentrations are often observed. Chemical analysis of molecular inorganic and organic tracer compounds and subsequently data analysis with receptor models give insight on the origin of the PM1 sources. In the present study, four source apportionment approaches were compared with an extended database containing inorganic and organic compounds that were measured during an intensive sampling campaign at urban traffic and urban background sites in Barcelona. Source apportionment of the combined database, containing both inorganic and organic compounds, was compared with more conventional approaches using inorganic and organic databases separately. Traffic emission sources were identified in all models for the two sites. The combined inorganic and organic databases provided higher discrimination capacity of emission sources. It identified aerosols generated by regional recirculation of biomass burning, secondary biogenic organic aerosols, harbor emissions, and specific industrial emissions. In this respect, this approach identified a relevant industrial source situated at NE Barcelona in which a waste incinerator plant, a combined-cycle power plant, and an industrial glass complex are located. Models using both inorganic and organic molecular tracer compounds improve the source apportionment of urban PM.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Compostos Orgânicos/análise , Biomassa , Indústrias , Centrais Elétricas , Estações do Ano
17.
Sci Rep ; 9(1): 10613, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31316110

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Rep ; 8(1): 13844, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218089

RESUMO

Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of 'primary' wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37-0.45% and 0.19-0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2-0.3%), sea-salt CCN contributed 2-13% of the activated nuclei in the cAA air and 8-51% for the marine air for surface-level wind speed < 16 m s-1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%.


Assuntos
Atmosfera/química , Oceanos e Mares , Estações do Ano , Aerossóis , Ar , Regiões Antárticas , Fenômenos Químicos , Vento
19.
Sci Total Environ ; 384(1-3): 120-33, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17628640

RESUMO

An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS; TSI 3800) was deployed to Athens (Greece) during August 2003. The instrument provides information on a polydisperse aerosol, acquiring precise aerodynamic diameter (+/-1%) within the range 0.3 to 3 mum and individual particle positive and negative mass spectral data in real time. Sampling was carried out indoors and outdoors at an office in a building on a minor road in the city centre and various outdoor and indoor sources were identified. Specific outdoor particles such as dust and carbon particles were detected in indoor air. The generation of particles from indoor sources was studied and several different types of particle were found to be present in environmental tobacco smoke (ETS): three were potassium-rich (with differing proportions of carbon) emitted directly in the exhaled mainstream smoke. Two other types arose mainly when the cigarette was left smouldering on an ash-tray. Another particle type exhibited a strong signal at m/z 84, most likely due to a nicotine fragment. The temporal trend of this specific particle type showed likely condensation of semi-volatile constituents on existing potassium-rich particles. A release of insect repellent in the room was also successfully monitored.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis , Carbono/análise , Grécia , Repelentes de Insetos/análise , Espectrometria de Massas , Tamanho da Partícula , Material Particulado/química , Poluição por Fumaça de Tabaco/análise
20.
Environ Sci Pollut Res Int ; 24(18): 15406-15415, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28508335

RESUMO

Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 µm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.


Assuntos
Aerossóis/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Material Particulado/toxicidade , Poluentes Atmosféricos , Animais , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Medição de Risco , Espanha , Leveduras , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA