Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Langmuir ; 38(10): 3082-3089, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35239353

RESUMO

In this work, we reveal the coordination of copper ions absorbed by a series of covalent organic frameworks. The frameworks were synthesized through the nucleophilic substitution of either cyanuric chloride or phosphonitrilic chloride trimer by 4,4'-bipyridine, and they were utilized as absorbers for the removal of copper ions from aqueous solutions. The exfoliated counterpart of the layered network was compared to the bulk materials in terms of the copper retention capacity and efficiency. The ion absorption capacity of copper ranged from 100 to 290 mg/g depending on the morphology and chemical structure of the framework. As evidenced by the SEM and XRD analysis, the copper absorption induced certain morphological changes in the networks. EPR spectroscopy revealed the key finding of this study: the trigonal bipyramidal configuration of the copper ions in their divalent state, coordinated with the nitrogen of the core units, 4,4'-bipyridine, and chlorine ions. The analysis of the thoroughgoing experiments bridges the gap between coordination molecular chemistry and the field of covalent organic frameworks. EPR explores how the unique trigonal bipyramidal coordination could be suppressed in the end by the environment and, more specifically, by the addition of glycerol to the aqueous dispersions of the covalent organic frameworks.

2.
Sensors (Basel) ; 18(4)2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614770

RESUMO

Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium.

3.
Chemphyschem ; 18(24): 3540-3543, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29095560

RESUMO

Fullerene dyads bridged with perfluorinated linking groups have been synthesized through a modified arc-discharge procedure. The addition of Teflon inside an arc-discharge reactor leads to the formation of dyads, consisting of two C60 fullerenes bridged by CF2 groups. The incorporation of bridging groups containing electronegative atoms lead to different energy levels and to new features in the photoluminescence spectrum. A suppression of the singlet oxygen photosensitization indicated that the radiative decay from singlet-to-singlet state is favoured against the intersystem crossing singlet-to-triplet transition.

4.
Nano Lett ; 16(1): 170-6, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26633125

RESUMO

We report transport measurements on a graphene-fullerene single-molecule transistor. The device architecture where a functionalized C60 binds to graphene nanoelectrodes results in strong electron-vibron coupling and weak vibron relaxation. Using a combined approach of transport spectroscopy, Raman spectroscopy, and DFT calculations, we demonstrate center-of-mass oscillations, redox-dependent Franck-Condon blockade, and a transport regime characterized by avalanche tunnelling in a single-molecule transistor.

5.
J Mater Chem C Mater ; 12(28): 10475-10486, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39035222

RESUMO

CuFeS2 is a prominent chalcogenide that possesses similar optical properties and a significantly lower cost, compared to gold. Additionally, covalent organic frameworks are a class of materials at the forefront of current research, mainly used as photoactive components and porous absorbers. Hence, in this work, hydrophilic CuFeS2 particles are coupled with multi-functional covalent organic frameworks through ionic bonding to produce a hybrid material with unique and optimized properties. To render the CuFeS2 particles negatively charged and dispersible in water, we coated them with sodium dodecyl sulfonate, shifting the surface plasmon resonance of the nanoparticles from 472 to 492 nm. When they are electrostatically assembled with the positively charged COFs, an S-scheme is formed and the fluorescence of the hybrid materials is highly quenched, with the electron transfer happening from the networks to the nanoparticles and a simultaneous energy exchange which is dependent on the emission wavelength. Through detailed fluorescence spectroscopy, time-resolved measurements and Stern-Volmer analysis, we identified an efficient emission quenching that differs from the bulk to the exfoliated hybrid system, while detailed electron microscopy studies demonstrated the strong interaction between the two components. The quenching mechanisms and the on or off surface resonance dependent lifetime could be applied to photocatalytic and photovoltaic applications.

6.
Sci Total Environ ; 892: 164218, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37211132

RESUMO

In the present study, the photocatalytic performance of exfoliated graphitic carbon nitride (g-C3N4) catalysts, with enhanced properties and response in UV and visible light irradiation, was evaluated for the removal of selected contaminants i.e., diuron, bisphenol A and ethyl paraben. Commercial TiO2 Degussa P25 was also used as a reference photocatalyst. The g-C3N4 catalysts demonstrated good photocatalytic activity which in some cases is comparable to TiO2 Degussa P25 leading to high removal percentages of the studied micropollutants under UV-A light irradiation. In contrast to TiO2 Degussa P25, g-C3N4 catalysts were also able to degrade the studied micropollutants under visible light irradiation. For all the studied g-C3N4 catalysts under both UV-A and visible light irradiation, the overall degradation rate decreases in the order of bisphenol A > diuron > ethyl paraben. Among the studied g-C3N4, the chemically exfoliated catalyst (g-C3N4-CHEM) showed superior photocatalytic activity under UV-A light irradiation due to its enhanced characteristics, such as pore volume and specific surface area and ~ 82.0 % in 6 min, ~75.7 % in 15 min and ~ 96.3 % in 40 min removals were achieved for BPA, DIU and EP, respectively. Under visible light irradiation, the thermally exfoliated catalyst (g-C3N4-THERM) demonstrated the best photocatalytic performance and the degradation ranged from ~29.5 to 59.4 % after 120 min. EPR data revealed that the three g-C3N4 semiconductors generate mainly O2•-, whereas TiO2 Degussa P25 generates both HO• and O2•-, the latter only under UV-A light irradiation. Nevertheless, the indirect formation of HO• in the case of g-C3N4 should also be considered. Hydroxylation, oxidation, dealkylation, dechlorination and ring opening were the main degradation pathways. The process proceeded without significant alterations in toxicity levels. Based on the results, heterogeneous photocatalysis using g-C3N4 catalysts is a promising method for the removal of organic micropollutants without the formation of harmful transformation products.


Assuntos
Diurona , Luz
7.
J Am Chem Soc ; 134(2): 747-50, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22201260

RESUMO

We present a systematic investigation of the formation mechanism of carbogenic nanoparticles (CNPs), otherwise referred to as C-dots, by following the pyrolysis of citric acid (CA)-ethanolamine (EA) precursor at different temperatures. Pyrolysis at 180 °C leads to a CNP molecular precursor with a strongly intense photoluminescence (PL) spectrum and high quantum yield formed by dehydration of CA-EA. At higher temperatures (230 °C) a carbogenic core starts forming and the PL is due to the presence of both molecular fluorophores and the carbogenic core. CNPs that exhibit mostly or exclusively PL arising from carbogenic cores are obtained at even higher temperatures (300 and 400 °C, respectively). Since the molecular fluorophores predominate at low pyrolysis temperatures while the carbogenic core starts forming at higher temperatures, the PL behavior of CNPs strongly depends on the conditions used for their synthesis.


Assuntos
Carbono/química , Luminescência , Nanopartículas/química , Temperatura Alta , Luz , Estrutura Molecular
8.
Nanoscale Horiz ; 7(6): 616-625, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35439804

RESUMO

For the purpose of creating single-molecule junctions, which can convert a temperature difference ΔT into a voltage ΔV via the Seebeck effect, it is of interest to screen molecules for their potential to deliver high values of the Seebeck coefficient S = -ΔV/ΔT. Here we demonstrate that insight into molecular-scale thermoelectricity can be obtained by examining the widths and extreme values of Seebeck histograms. Using a combination of experimental scanning-tunnelling-microscopy-based transport measurements and density-functional-theory-based transport calculations, we study the electrical conductance and Seebeck coefficient of three endohedral metallofullerenes (EMFs) Sc3N@C80, Sc3C2@C80, and Er3N@C80, which based on their structures, are selected to exhibit different degrees of charge inhomogeneity and geometrical disorder within a junction. We demonstrate that standard deviations in the Seebeck coefficient σS of EMF-based junctions are correlated with the geometric standard deviation σ and the charge inhomogeneity σq. We benchmark these molecules against C60 and demonstrate that both σq, σS are the largest for Sc3C2@C80, both are the smallest for C60 and for the other EMFs, they follow the order Sc3C2@C80 > Sc3N@C80 > Er3N@C80 > C60. A large value of σS is a sign that a molecule can exhibit a wide range of Seebeck coefficients, which means that if orientations corresponding to high values can be selected and controlled, then the molecule has the potential to exhibit high-performance thermoelectricity. For the EMFs studied here, large values of σS are associated with distributions of Seebeck coefficients containing both positive and negative signs, which reveals that all these EMFs are bi-thermoelectric materials.

9.
RSC Adv ; 11(31): 18852-18859, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478627

RESUMO

Highly hydrophobic perfluorinated polyaniline thin films with water contact angle of ∼140° and low internal resistance properties are prepared through electrochemical polymerization. UV-visible spectroscopy demonstrates a gradual evolution of the polaron band which indicates the electronic conductive properties of the polymers. Simultaneous possession of the water-repelling property and electron conductivity for superhydrophobic perfluorinated polyaniline leads to a unique polymer that is suitable as a solid contact in ion-selective electrodes for in situ monitoring of pH changes during early stages of inflammation and septic shock. The superhydrophobic properties should suppress interactions with interfering salts and proteins, and the sensitivity towards protons could be monitored by measuring the phase boundary potential, which depends on the H+ concentration. The potentiometric measurements demonstrate a fast response with a slope of 44.4 ± 0.2 mV per unit pH. The presence of interfering ions and/or human serum albumin does not have any significant effect on the performance of the perfluorinated film. Moreover, it is demonstrated that the response of the perfluorinated film is reversible within the biomedically relevant pH range from 4.0 to 8.5, and stable over time.

10.
Chem Commun (Camb) ; 53(17): 2602-2605, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230873

RESUMO

We report the effect of surfactant addition on the optical properties of perfluorinated polyanilines synthesized through liquid-liquid interfaces. We obtained very long Stokes shifts, 205 nm, for oligomers derived from a hydrofluoroether-water system in the presence of Triton X-100 as a surfactant, and vibronic fine features from a toluene-water system.

11.
J Phys Chem B ; 120(13): 3441-54, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26963137

RESUMO

A series of light-emitting perfluorinated polyanilines were synthesized by the oxidative polymerization of 3-perfluorooctyl aniline through a variety of aqueous/organic interfaces. According to the interfacial tension between the two solvents (the organic being chloroform, dichloromethane, perfluorinated ether, toluene, or o-dichlorobenzene), we obtain distinctive classes of materials based on the crystal packing, protonation, and oxidation state of the polymeric chains. We distinguish between soluble fractions with a distinctive, strong, and red-shifted photoluminescence pattern and an insoluble precipitate which can be subsequently solubilized in a mixture of acetone and toluene. The emission maximum for the insoluble fraction is located in the ultraviolet or blue region with a small Stokes shift; maxima for the soluble counterparts are in the green to yellow region. The soluble derivatives demonstrate a significantly smaller band gap compared to the monomer and large Stokes shifts up to 163 nm; the emission maximum for the most red-shifted emission was located at λ(em) = 548 nm. Their redox activity toward silver nanoparticles, their sensor reactivity with organic acid and bases, and the subsequent changes in the optical properties were demonstrated and the structure of the materials was evaluated with NMR, X-ray diffraction, and FTIR/Raman spectroscopy.

12.
Nanoscale ; 8(23): 11993-2001, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240959

RESUMO

Herewith, we report the influence of post-synthesis heat treatment (≤2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm(2)) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and improvement in the crystallites alignment within the MWCNTs resulted in reduced dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that the crystallinity is improved in scales of few tens of nanometres while the point defects remain largely unaffected. The heat treatment also had a marked benefit on the mechanical properties of the carpets. For the first time, we report compression moduli as high as 120 MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported figures. The application of higher temperatures (arc-discharge plasma, ≥4000 °C) resulted in the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-like carbon nanotubes.

13.
Adv Colloid Interface Sci ; 224: 46-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272721

RESUMO

In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented.


Assuntos
Compostos de Anilina/síntese química , Nanocompostos/química , Nanofibras/química , Nanotecnologia/métodos , Polímeros/síntese química , Pirróis/síntese química , Condutividade Elétrica , Grafite/química , Humanos , Nanotubos de Carbono/química , Polimerização , Propriedades de Superfície
14.
J Colloid Interface Sci ; 407: 1-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23859815

RESUMO

We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70 wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8 emu/g respectively). At lower FePt loading (12 wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2 emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used.

15.
Adv Colloid Interface Sci ; 166(1-2): 119-35, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21683320

RESUMO

Utilization of metallic nanoparticles in various biotechnological and medical applications represents one of the most extensively investigated areas of the current materials science. These advanced applications require the appropriate chemical functionalization of the nanoparticles with organic molecules or their incorporation in suitable polymer matrices. The intensified interest in polymer nanocomposites with silver nanoparticles is due to the high antimicrobial effect of nanosilver as well as the unique characteristics of polymers which include their excellent structural uniformity, multivalency, high degree of branching, miscellaneous morphologies and architectures, and highly variable chemical composition. In this review, we explore several aspects of antimicrobial polymer silver nanocomposites, giving special focus to the critical analysis of the reported synthetic routes including their advantages, drawbacks, possible improvements, and real applicability in antibacterial and antifungal therapy. A special attention is given to "green" synthetic routes exploiting the biopolymeric matrix and to the methods allowing preparing magnetically controllable antimicrobial polymers for targeting to an active place. The controversial mechanism of the action of silver against bacteria, fungi and yeasts as well as perspectives and new applications of silver polymeric nanocomposites is also briefly discussed.


Assuntos
Antibacterianos/farmacologia , Nanocompostos/química , Nanocompostos/classificação , Prata , Antibacterianos/síntese química , Carboidratos/química , Dendrímeros/química , Nanopartículas Metálicas , Tamanho da Partícula , Polímeros/química , Prata/química
16.
Nanoscale ; 2(9): 1653-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20820694

RESUMO

We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine (liquid-like) and the control (solid-like).


Assuntos
Fulerenos/química , Íons/química , Aminas/química , Cristalização , Ligação de Hidrogênio , Polietilenoglicóis/química , Polipropilenos/química
17.
Chem Commun (Camb) ; 46(10): 1766-8, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20177643

RESUMO

Graphene sheets derived from dispersion of graphite in pyridine were functionalised by the 1,3 dipolar cycloaddition of azomethine ylide. The organically modified graphene sheets are easily dispersible in polar organic solvents and water, and they are extensively characterised using several spectroscopic and microscopy techniques.

18.
Nanoscale Res Lett ; 4(11): 1358-64, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20628449

RESUMO

Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I)/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 degrees C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp(2) carbon at the Raman spectrum of both samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA