Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(6): e1011408, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294834

RESUMO

Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches (Haemorhous mexicanus) across the temporal invasion gradient of a recently emerged bacterial pathogen (Mycoplasma gallisepticum), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.


Assuntos
Doenças das Aves , Doenças Transmissíveis Emergentes , Tentilhões , Mycoplasma gallisepticum , Animais , Tentilhões/microbiologia , Tolerância Imunológica , Mycoplasma gallisepticum/genética
2.
Microb Pathog ; 135: 103621, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310831

RESUMO

Astragalus polysaccharides (APS) are a traditional Chinese medicine with a therapeutic effect by enhancing immune function; however, the underlying functional mechanism is still unclear. The aim of the present study was to determine the effect of oral administration of APS on jejunum mucosal immunity in chickens vaccinated against Newcastle disease (ND). One-day-old Hy-Line male chickens were divided into five groups of 20 chicks each: three APS groups, one vaccinated control (VC) group and one non-vaccinated negative control (NC) group. On d 10, the APS groups were orally administered 0.5 mL of APS at doses of 1 mg/mL (APSL), 2 mg/mL (APSM) and 4 mg/mL (APSH) daily for 4 consecutive days. The chicks in the control groups were administered 0.5 mL saline for those 4 days. All groups except NC were administered a ND virus (NDV) vaccine on day 14. The jejunum was removed from 4 randomly selected chickens of each group at 1, 7, 14 and 28 days after vaccination. The jejunal villus height (VH) and crypt depth (CD) were measured and the VH:CD ratio calculated. Immunohistochemistry was used to analyze the differences of IgA+ cells in the jejunum. NDV specific secretory IgA (sIgA) levels in jejunal contents were detected using an indirect ELISA. At most time points, VH:CD ratios, number of IgA+ cells, and sIgA levels were significantly higher in the APS groups than those in VC and NC groups, but there were little differences among the three doses of APS groups. These results indicate that oral administration of APS could enhance the intestinal mucosal immune function of chickens, and APS could be used as a vaccine enhancer.


Assuntos
Astrágalo/química , Galinhas/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Doença de Newcastle/imunologia , Polissacarídeos/administração & dosagem , Vacinação/veterinária , Administração Oral , Animais , Modelos Animais de Doenças , Imunoglobulina A Secretora , Jejuno/patologia , Masculino , Medicina Tradicional Chinesa , Vírus da Doença de Newcastle/imunologia , Extratos Vegetais/administração & dosagem
3.
BMC Vet Res ; 13(1): 276, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854912

RESUMO

BACKGROUND: A unique clade of the bacterium Mycoplasma gallisepticum (MG), which causes chronic respiratory disease in poultry, has resulted in annual epidemics of conjunctivitis in North American house finches since the 1990s. Currently, few immunological tools have been validated for this songbird species. Interleukin-1ß (IL-1ß) is a prototypic multifunctional cytokine and can affect almost every cell type during Mycoplasma infection. The overall goal of this study was to develop and validate a direct ELISA assay for house finch IL-1ß (HfIL-1ß) using a cross-reactive chicken antibody. METHODS: A direct ELISA approach was used to develop this system using two different coating methods, carbonate and dehydration. In both methods, antigens (recombinant HfIL-1b or house finch plasma) were serially diluted in carbonate-bicarbonate coating buffer and either incubated at 4 °C overnight or at 60 °C on a heating block for 2 hr. To generate the standard curve, rHfIL-1b protein was serially diluted at 0, 3, 6, 9, 12, 15, 18, 21, and 24 ng/mL. Following blocking and washing, anti-chicken IL-1b polyclonal antibody was added, plates were later incubated with detecting antibodies, and reactions developed with tetramethylbenzidine solution. RESULTS: A commercially available anti-chicken IL-1ß (ChIL-1ß) polyclonal antibody (pAb) cross-reacted with house finch plasma IL-1ß as well as bacterially expressed recombinant house finch IL-1ß (rHfIL-1ß) in immunoblotting assays. In a direct ELISA system, rHfIL-1ß could not be detected by an anti-ChIL-1ß pAb when the antigen was coated with carbonate-bicarbonate buffer at 4°C overnight. However, rHfIL-1ß was detected by the anti-ChIL-1ß pAb when the antigen was coated using a dehydration method by heat (60°C). Using the developed direct ELISA for HfIL-1ß with commercial anti-ChIL-1ß pAb, we were able to measure plasma IL-1ß levels from house finches. CONCLUSIONS: Based on high amino acid sequence homology, we hypothesized and demonstrated cross-reactivity of anti-ChIL-1ß pAb and HfIL-1ß. Then, we developed and validated a direct ELISA system for HfIL-1ß using a commercial anti-ChIL-1ß pAb by measuring plasma HfIL-1ß in house finches.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Tentilhões/imunologia , Interleucina-1beta/sangue , Animais , Doenças das Aves/microbiologia , Galinhas/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Tentilhões/sangue , Interleucina-1beta/imunologia , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum
4.
Foodborne Pathog Dis ; 14(9): 531-536, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28696788

RESUMO

Studies indicate that persistent Salmonella colonization occurs in poultry that are infected early in life, leading to both food safety and public health concerns. Development of improved preharvest Salmonella management strategies is needed to reduce poultry product contamination. The objective of this study was to evaluate the efficacy of a product containing medium chain fatty acids (MCFA) for reducing early Salmonella colonization in turkey poults. Day-of-hatch turkeys were provided a standard starter diet supplemented with MCFA at 0 (negative and positive controls), 1.5, 3, 4.5, or 6 lbs/ton of feed. Positive control and MCFA treated birds were also crop-gavaged with 108 colony forming units (CFU) of bioluminescent Salmonella Typhimurium. Gastrointestinal tissue samples were collected at 3 days postinoculation for bioluminescence imaging (Meckel's diverticulum to the cloaca) and selective enumeration (cecal contents). Quantification of bioluminescence indicated that the 4.5 and 6 lbs/ton MCFA groups had significantly less colonization than the positive control group (p = 0.0412 and p < 0.0001, respectively). Similarly, significantly lower numbers (1-log10 CFU/g reduction) of Salmonella were observed in the ceca of the 6 lbs/ton MCFA group compared to the positive control group (p = 0.0153). These findings indicate that incorporation of MCFA in turkey diets can significantly reduce early Salmonella colonization. In addition, this study highlights the utility of bioluminescence imaging as a screening methodology for assessing the efficacy of treatments that may reduce Salmonella in poultry.


Assuntos
Suplementos Nutricionais , Ácidos Graxos/administração & dosagem , Contaminação de Alimentos/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella typhimurium/isolamento & purificação , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Inocuidade dos Alimentos , Trato Gastrointestinal/citologia , Trato Gastrointestinal/microbiologia , Humanos , Medições Luminescentes/veterinária , Doenças das Aves Domésticas/microbiologia , Distribuição Aleatória , Salmonelose Animal/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Perus
5.
Vet Res ; 47(1): 111, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825377

RESUMO

Coccidiosis is endemic in the commercial broiler industry capable of inflicting devastating economic losses to poultry operations. Vaccines are relatively effective in controlling the disease; their efficacy could potentially be improved with concurrent use of probiotics as evaluated in this study using an Eimeria challenge. Day of hatch 400 Cobb-500 male broilers were assigned to one of four treatment groups including control (CON), vaccine-only gel application (VNC), probiotic-only gel application (NPC), and vaccine-plus-probiotic gel application (VPC). Birds were placed in floor pens (6 replicate pens/treatment, 16-17 birds/pen). NPC and VPC birds received the probiotics in the water on days 2-4, 8, 14-20, 22, 29, and 34-36. On day 15, birds were mildly challenged with 0.5 mL of a mixed oral inoculum of Eimeria sp. prepared with the coccidiosis vaccine at 10× the vaccination dose. Performance measurements were recorded on first day and weekly afterwards, and lesion scores were evaluated 6 days post-challenge. Overall, the probiotics and coccidiosis vaccine resulted in an enhanced protective effect against the challenge, with VPC birds exhibiting lower lesion scores in the duodenum than VNC or NPC birds. Birds in the VPC treatment also demonstrated higher weight gains during days 1-15, days 7-15, and days 21-28 when compared to the VNC birds. These results suggest that the combination of probiotics and coccidiosis vaccines could enhance performance and provide an additional protective effect against a mixed Eimeria challenge.


Assuntos
Coccidiose/veterinária , Eimeria , Doenças das Aves Domésticas/prevenção & controle , Probióticos/uso terapêutico , Vacinas Protozoárias/uso terapêutico , Animais , Galinhas/parasitologia , Coccidiose/prevenção & controle , Eimeria/imunologia , Masculino , Vacinas Protozoárias/imunologia
6.
Poult Sci ; 95(2): 364-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26706359

RESUMO

Escalating product recalls as a consequence of Salmonella-contaminated poultry products have resulted in detrimental economic impacts in the poultry industry. One potential long-term alternative method to Salmonella prevention is genetic selection to improve innate resistance. This study evaluated the ex vivo effects of Salmonella Heidelberg (SH) on phagocytic and bactericidal leukocyte function in turkeys from six pedigree lines (A-F). Day-of-hatch poults (n = 48) were placed and raised in cages (2 birds/gender/genetic line/cage) to 35 d when heterophils and peripheral blood mononuclear cells (PBMCs) were extracted from males and females of each line. Cells were used in phagocytic and bactericidal assays to determine the ex vivo effects of SH on turkey leukocyte activity. Data were analyzed using the Fit Model platform in JMP Pro 10.0 (SAS Institute Inc.) with differences considered significant at P ≤ 0.05 and data reported as LS Means with SEM. Although genetic line had no significant effect on phagocytosis of SH by heterophils and PBMCs, cumulatively, female cells exhibited higher phagocytosis potential than those from males. The main effect of gender was significant on bactericidal activity of PBMCs when incubated at a 1:10 and 1:100 PBMC to SH ratio. Genetic line also had a significant effect on bactericidal activity of PBMCs with cells from line F exhibiting the best activity. These results suggest that gender had a marked cumulative effect on phagocytosis of SH by heterophils and PBMCs while both genetic line and gender had a prominent effect on bacterial killing of SH by turkey PBMCs. Once able to determine genetic markers associated with these immune responses to Salmonella, genetic selection for increased resistance may become feasible in turkeys.


Assuntos
Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Salmonella enterica/fisiologia , Perus , Animais , Feminino , Leucócitos Mononucleares/imunologia , Masculino , Fagocitose , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/genética , Salmonelose Animal/microbiologia
7.
J Immunol ; 188(8): 3912-9, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22407916

RESUMO

Analyses of the available avian genomes revealed the presence of a second TCRδ locus in the Galliformes. This second TCRδ locus is nonsyntenic to the conventional TCRα/δ and is unusual in that the V genes are more related to IgH V genes (VH) than to TCR V genes. The second TCRδ is not found in another avian lineage, the passerine zebra finch. Rather the finch's conventional TCRα/δ locus contains VH genes that are expressed with the conventional Cδ gene, similar to what has been found in amphibians. A comparison between Galliformes and Passeriformes genomic organization suggests an origin of the second TCRδ in the former lineage involving gene duplication. Expression of these atypical TCRδ transcripts with a VH domain paired with Cδ was found in lymphoid tissues of both avian lineages. The configuration of the second TCRδ in chicken and turkey is reminiscent of the TCRδ duplication that is present in nonplacental mammals and provides insight into the origin of the uniquely mammalian TCRµ locus.


Assuntos
Galliformes/genética , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Genes Codificadores dos Receptores de Linfócitos T , Passeriformes/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Genoma , Genômica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
8.
Poult Sci ; 93(11): 2772-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25214558

RESUMO

Coccidiosis is an inherent risk in the commercial broiler industry and inflicts devastating economic losses to poultry operations. Probiotics may provide a potential alternative to the prophylactic use of anticoccidials in commercial production. This study evaluated the effects of probiotic applications (feed and water) on bird performance and resistance to a mixed Eimeria infection in commercial broilers. On day of hatch, 1,008 commercial male broilers (Cobb 500) were assigned to 1 of 6 treatments (8 replicate floor pens; 21 birds/pen), including noninfected negative control (NEG), Eimeria-infected positive control (POS), anticoccidial control (0.01% salinomycin, SAL), intermittent high-dose water-applied probiotic (WPI), continuous low-dose water-applied probiotic (WPC), and feed-supplemented probiotic (FSP). On d 15, all birds except those in NEG were challenged with a mixed inoculum of Eimeria acervulina, Eimeria maxima, and Eimeria tenella. Measurements were taken on d 7, 15, 21, 28, 35, and 42. Fecal samples were collected from d 20 to 24 for oocyst counts, and lesion scores were evaluated on d 21. Data were analyzed using the Fit Model platform in JMP Pro 10.0 (SAS Institute Inc.). Differences in experimental treatments were tested using Tukey's honestly significant difference following ANOVA with significance reported at P ≤ 0.05. Overall, NEG birds outperformed all other groups. For performance, the probiotic groups were comparable with the SAL-treated birds, except during the 6 d immediately following the Eimeria species challenge, where the SAL birds exhibited better performance. The WPC birds had lower duodenal and jejunal lesion scores, indicating a healthier intestine and enhanced resistance to Eimeria species compared with POS. Birds in the WPI treatment shed fewer oocysts in the feces, although this was not a trend for all of the probiotic treatment groups. The results of this study suggest probiotic supplementation without anticoccidials can enhance performance and help alleviate the negative effects of a mixed Eimeria infection.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas , Coccidiose/veterinária , Resistência à Doença , Eimeria/fisiologia , Doenças das Aves Domésticas/prevenção & controle , Probióticos/uso terapêutico , Ração Animal/análise , Animais , Bifidobacterium/fisiologia , Galinhas/crescimento & desenvolvimento , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Dieta/veterinária , Enterococcus/fisiologia , Lactobacillus/fisiologia , Masculino , Oocistos/fisiologia , Contagem de Ovos de Parasitas/veterinária , Doenças das Aves Domésticas/parasitologia , Probióticos/análise
9.
Poult Sci ; 93(2): 479-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24570472

RESUMO

The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry.


Assuntos
Mapeamento Cromossômico/métodos , Genoma , Análise de Sequência de DNA/métodos , Perus/genética , Animais , Mapeamento Cromossômico/veterinária , Cromossomos Artificiais Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala
10.
Animals (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540068

RESUMO

This study investigated the effects of a synbiotic consisting of inulin, Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, and Lactobacillus reuteri given orally to day (d)-of-hatch (DOH) broiler chicks at the hatchery and in the feed for a 21 d period. A total of 480 Cobb male broilers were randomly divided into one of four treatments using a 2 × 2 factorial design as follows: (1) control (CTRL) group receiving a gel-only oral application on DOH at the hatchery prior to transport and a non-medicated basal corn/soybean meal starter diet; (2) hatchery synbiotic (HS) receiving an oral gel containing the synbiotic (0.5 mL/bird) at the hatchery and the basal diet; (3) CTRL + dietary synbiotic at 0.5 kg/MT (DS); and (4) HS + dietary synbiotic at 0.5 kg/MT (HSDS). On d 7 and d 21, one bird per pen (eight replicate pens/group) was euthanized, and the ileum was immediately removed for qPCR analysis. Data were subjected to a 2-way ANOVA using GLM procedure (JMP Pro17). A significant diet × hatchery interaction was observed in feed conversion ratio (FCR) from d 14 to d 21 (p = 0.013) where the HS, DS, and HSDS treatments had a significantly lower FCR compared to the CTRL. However, no significant interaction effect was observed for body weight gain (BWG) or FCR during the overall experimental period. No significant interaction was observed in mRNA abundance of the evaluated genes in the ileum on d 7 and d 21. Gel application with the synbiotic significantly reduced sodium-dependent glucose cotransporter 1 (SGLT1) mRNA abundance on d 7 (p = 0.035) in comparison to birds receiving gel alone. Regardless of hatchery application, dietary synbiotic supplementation significantly reduced Toll-like receptor (TLR)2, TLR4, and interleukin (IL)-10 mRNA abundance on d 7 (p = 0.013). In conclusion, these findings showed that hatchery and dietary synbiotic application could have a potential beneficial impact on broiler intestinal immunity by regulating the TLR response, a key element of innate immunity. FCR was improved from d 14 to d 21 after synbiotic application. Future research involving extended grow-out studies with a disease challenge would expand on the implications of an early application of synbiotics.

11.
Poult Sci ; 103(3): 103470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301495

RESUMO

Several genetically modified (GM) plants have been produced and approved by regulatory agencies worldwide for cultivation and commercialization. Soybean and its by-products are major components of poultry diets and approximately 74% of world production is obtained from GM soybean events. The aim of this study was to evaluate the nutrient composition of DP-3Ø5423-1 extruded full-fat soybean meal (FFSBM) and near isoline non-GM control FFSBM included in broiler diets. Also assessed were their effects on bird performance, body composition, intestinal morphology, tissue fatty acid profile, and mRNA abundance of fatty acid metabolism markers. A total of 480 Ross 308 d of hatch birds were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or control FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). No significant interaction (P > 0.05) was observed between treatment groups in terms of performance and carcass composition. Morphological measurements of the jejunum and ileum were not influenced by the SBM treatments. Dietary addition of the DP-3Ø5423-1 FFSBM resulted in higher monounsaturated fatty acid composition of the thigh muscle and abdominal fat. Moreover, dietary treatment had no significant impact on the mRNA abundance of metabolic markers ACCα, FAS, MTTP, SREBP1, PPARα, PPARγ, AMPK-α1, SOD, CAT, and GPx in the liver. In conclusion, our results showed that DP-3Ø5423-1 extruded FFSBM is nutritionally equivalent to non-GM near-isoline counterpart with a comparable genetic background as evidenced by feed analyses except for fatty acid composition. Furthermore, the findings of this study clearly indicate that the examined DP-3Ø5423-1 FFSBM yields similar bird performance as conventional FFSBM.


Assuntos
Galinhas , Glycine max , Animais , Galinhas/genética , Ácidos Graxos , Fígado , RNA Mensageiro/genética
12.
Poult Sci ; 103(4): 103499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330889

RESUMO

Increased use of genetically modified (GM) plants in the food and feed industry has raised several concerns about the presence of unwanted genes in the food chain and potential associated health risks. In recent years, several studies have compared the nutrient contents of GM crops to conventional counterparts, and some have also tracked the fate of novel DNA fragments and proteins in the gastrointestinal (GIT) and their presence in several tissues. This study was conducted to investigate the fate of transgenic PHP19340A DNA fragment containing gm-fad2-1 (Soybean Event DP-3Ø5423-1) gene in digestive tract contents, blood, internal organs, and muscle tissues. The effects of feeding DP-3Ø5423-1 full-fat soybean meal (FFSBM) to broiler chickens on immune response and blood profiles were also evaluated on d 35. Day-old Ross 308 birds (n = 480) were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or non-GM FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). Based on PCR analysis, transgenic PHP19340A DNA fragment containing gm-fad2-1 gene was degraded throughout the digestive system to reach undetectable level in the cecal digesta. Moreover, there was no transgenic gene translocation to blood, organs, or muscle tissue. Feeding DP-3Ø5423-1 FFSBM to broilers had no effect on mRNA abundance of IL-1ß, IL-2, IL-6, IL-12B, IL-17A, IFNγ, TNFα, and NF-κB in the spleen or on blood profile. In conclusion, these findings indicate that the examined transgenic fragment in DP-3Ø5423-1 FFSBM progressively degraded in the GIT and did not translocate into blood or tissues. Along with the immune response and blood profile findings, it can be assumed that DP-3Ø5423-1 soybean is safe and unlikely to pose any health risks to broilers or consumers.


Assuntos
Galinhas , Glycine max , Animais , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , DNA/metabolismo , Glycine max/genética , Imunidade , Plantas Geneticamente Modificadas/genética , Distribuição Aleatória
13.
Poult Sci ; 103(7): 103806, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749104

RESUMO

Transfer of Salmonella to internal organs of broilers over a 35 d grow-out period was evaluated. A total of 360 one-day old chicks were placed in 18 floor pens of 3 groups with 6 replicate pens each. On d 0, broilers were orally challenged with a cocktail of Salmonella (equal population of marked serovars; nalidixic acid-resistant S. Typhimurium, rifampicin-resistant S. Infantis, and kanamycin-resistant S. Reading) to have 3 groups: L (low; ∼2 log CFU/bird); M (medium; ∼5 log CFU/bird); and H (High; ∼8 log CFU/bird). On d 2, 7 and 35, 4 birds/pen were euthanized and ceca, liver, and spleen samples were collected aseptically. Gizzard samples (4/pen) were collected on d 35. The concentration of Salmonella in liver and spleen were transformed to binary outcomes (positive and negative) and fitted in glm function of R using cecal Salmonella concentrations (log CFU/g) and inoculation doses (L, M, and H) as inputs. On d 2, H group showed greater (P ≤ 0.05) cecal colonization of all 3 serovars compared to L and M groups. However, M group showed greater (P ≤ 0.05) colonization of all 3 serovars in the liver and spleen compared to L group. Salmonella colonization increased linearly in the ceca and quadratically in the liver and spleen with increasing challenge dose (P ≤ 0.05). On d 35, L group had greater (P ≤ 0.05) S. Infantis colonization in the ceca and liver compared to M and H groups (P ≤ 0.05). Moreover, within each group on d 35, the concentration of S. Reading was greater than those of S. Typhimurium and S. Infantis for all 3 doses in the ceca and high dose in the liver and gizzard (P ≤ 0.05). Salmonella colonization diminished in the ceca, liver, and spleen during grow-out from d 0 to d 35 (P ≤ 0.05). On d 35, birds challenged with different doses of Salmonella cocktail showed a similar total Salmonella spp. population in the ceca (ca. 3.14 log CFU/g), liver (ca. 0.54 log CFU/g), spleen (ca. 0.31 log CFU/g), and gizzard (ca. 0.42 log CFU/g). Estimates from the fitted logistic model showed that one log CFU/g increase in cecal Salmonella concentration will result in an increase in relative risk of liver and spleen being Salmonella-positive by 4.02 and 3.40 times (P ≤ 0.01), respectively. Broilers from H or M group had a lower risk (28 and 23%) of being Salmonella-positive in the liver compared to the L group when the cecal Salmonella concentration is the same (P ≤ 0.05). Oral challenge of broilers with Salmonella spp. with various doses resulted in linear or quadratic increases in Salmonella colonization in the internal organs during early age and these populations decreased during grow-out (d 35). This research can provide guidance on practices to effectively mitigate the risk of Salmonella from chicken parts and enhance public health.


Assuntos
Galinhas , Fígado , Doenças das Aves Domésticas , Salmonelose Animal , Baço , Animais , Galinhas/microbiologia , Galinhas/crescimento & desenvolvimento , Salmonelose Animal/microbiologia , Doenças das Aves Domésticas/microbiologia , Baço/microbiologia , Fígado/microbiologia , Salmonella typhimurium/fisiologia , Ceco/microbiologia , Salmonella/fisiologia , Salmonella/isolamento & purificação , Moela das Aves/microbiologia , Salmonella enterica/fisiologia , Salmonella enterica/isolamento & purificação
14.
Front Immunol ; 15: 1250818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370402

RESUMO

Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infection Mycoplasma gallisepticum (MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3'-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs.


Assuntos
Tentilhões , Infecções por Mycoplasma , Animais , Túnica Conjuntiva , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Imunidade
15.
PLoS Biol ; 8(9)2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20838655

RESUMO

A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.


Assuntos
Genoma , Perus/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , DNA/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
16.
Parasitol Res ; 112(5): 1935-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435923

RESUMO

Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified, making it an interesting molecule from a functional perspective. In the present study, the localization of a parasite MIF protein as well as its effect on the host was characterized. Western blot analysis shows that Eimeria MIF (EMIF) is found during all parasite developmental stages tested. Transmission electron microscopy shows that MIF is distributed throughout cytosol and nucleus of Eimeria acervulina merozoites. Immunohistochemical analysis suggests that EMIF may be released into the surrounding tissues as early as 24 h after infection, while later during oocyst formation, MIF expression is localized to areas immediately surrounding the oocysts, as well as in wall-forming bodies. The chemotaxis assay revealed an inhibitory function of EMIF on chicken monocyte migration. Quantitative real-time PCR was performed to examine the effect of EMIF on host immune system by measuring the transcripts of inflammatory mediators. An ex vivo stimulation study showed that E. acervulina MIF (EaMIF) enhanced expression of pro-inflammatory cytokines and chemokines in the presence of lipopolysaccharide (LPS). Furthermore, sequential treatment of adherent peripheral blood mononuclear cells with EaMIF, chicken MIF, and LPS in 2-h intervals led to the highest levels of interleukin (IL)-1B, chemokine CCLi3, IL-18, and interferon-gamma mRNA expression. This study shows that parasite MIF is widely expressed and may have potential effects on the immune system of the host.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria tenella/patogenicidade , Eimeria/patogenicidade , Fatores Inibidores da Migração de Macrófagos/farmacologia , Doenças das Aves Domésticas/imunologia , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Coccidiose/imunologia , Coccidiose/parasitologia , Citocinas/imunologia , Citocinas/metabolismo , Sistema Imunitário/efeitos dos fármacos , Inflamação/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Doenças das Aves Domésticas/parasitologia
17.
Parasitol Res ; 112(12): 4161-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037539

RESUMO

The codon-optimized Eimeria tenella 3-1E gene was introduced into the lactic acid bacterial vector pTX8048 to construct plasmid pTX8048-3-1E. The plasmid pTX8048-3-1E was transformed into Lactococcus lactis NZ9000 by electroporation to create the strain of L. lactis pTX8048-3-1E. The expression of objective protein was verified by Western blot. The live bacteria L. lactis pTX8048-3-1E were administered orally, and an animal challenge experiment was carried out to evaluate the protective efficacy. The results indicated the strain of L. lactis pTX8048-3-1E was constructed successfully. Oral immunization to specific pathogen-free (SPF) chickens with L. lactis pTX8048-3-1E provided partial protection against homologous challenge including significant increased oocyst decrease ratio, reduced average lesion score in cecum, and improved body weight gain compared to control bacteria L. lactis pTX8048. These results demonstrate the use of Lactococcus as live vector for delivery of Eimeria antigen is feasible and promising method to control coccidiosis in poultry.


Assuntos
Antígenos de Helmintos/imunologia , Coccidiose/prevenção & controle , Eimeria tenella/imunologia , Lactococcus lactis , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Administração Oral , Animais , Antígenos de Helmintos/genética , Ceco/imunologia , Ceco/patologia , Galinhas/imunologia , Coccidiose/imunologia , Coccidiose/veterinária , Eimeria tenella/genética , Vetores Genéticos , Plasmídeos , Doenças das Aves Domésticas/imunologia , Organismos Livres de Patógenos Específicos , Vacinação/métodos
18.
Microorganisms ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630454

RESUMO

Necrotic enteritis (NE) is an intestinal disease that results in poor performance, inefficient nutrient absorption, and has a devastating economic impact on poultry production. This study evaluated the effects of a saponin-based product (Clarity Q, CQ) during an NE challenge. A total of 1200 male chicks were randomly assigned to four dietary treatments (10 pens/treatment; 30 birds/pen): treatment 1 (NC), a non-medicated corn-soybean basal diet; treatment 2 (PC), NC + 50 g/metric ton (MT) of bacitracin methylene disalicylate (BMD); and treatments 3 (CQ15) and 4 (CQ30), NC + 15 and 30 g/MT, respectively. On the day (d) of placement, birds were challenged by a coccidia vaccine to induce NE. On d 8, 14, 28, and 42, performance parameters were measured. On d 8, three birds/pen were necropsied for NE lesions. On d 8 and d 14, jejunum samples from one bird/pen were collected for mRNA abundance of tight junction proteins and nutrient transporter genes. Data were analyzed in JMP (JMP Pro, 16), and significance (p ≤ 0.05) between treatments was identified by Fisher's least significant difference (LSD) test. Compared to PC and NC, CQ15 had higher average daily gain (ADG), while CQ30 had lower average daily feed intake (ADFI) and feed conversion ratio (FCR). NE lesions in the duodenum were lower in CQ15 compared to all other treatments. On d 8, mRNA abundance of CLDN1, CLDN5, AMPK, PepT2, GLUT2, and EAAT3 were significantly greater in CQ30 (p < 0.05) compared to both PC and NC. On d 14, mRNA abundance of ZO2 and PepT2 was significantly lower in PC when compared to all treatments, while that of ANXA1, JAM3, and GLUT5 was comparable to CQ15. In summary, adding Clarity Q to broiler diets has the potential to alleviate adverse effects caused by this enteric disease by improving performance, reducing intestinal lesions, and positively modulating the mRNA abundance of various tight junction proteins and key nutrient transporters during peak NE infection.

19.
Microorganisms ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630670

RESUMO

Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.

20.
Cytokine ; 60(3): 815-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22980486

RESUMO

As a member of the interleukin (IL)-10 family, IL-22 is an important mediator in modulating tissue responses during inflammation. Through activation of STAT3-signaling cascades, IL-22 induces proliferative and anti-apoptotic pathways, as well as antimicrobial peptides (AMPs), that help prevent tissue damage and aid in its repair. This study reports the cloning and expression of recombinant chicken IL-22 (rChIL-22) and its soluble receptor, rChIL22BP, and characterization of biological effects of rChIL-22 during inflammatory responses. Similar to observations with mammalian IL-22, purified rChIL-22 had no effect on either peripheral blood mononuclear cells (PBMCs) or lymphocytes. This was due to the low expression of the receptor ChIL22RA1 chain compared to ChIL10RB chain. rChIL-22 alone did not affect chicken embryo kidney cells (CEKCs); however, co-stimulation of CEKCs with LPS and rChIL-22 enhanced the production of pro-inflammatory cytokines, chemokines and AMPs. Furthermore, rChIL-22 alone stimulated and induced acute phase reactants in chicken embryo liver cells (CELCs). These effects of rChIL-22 were abolished by pre-incubation of rChIL-22 with rChIL22BP. Together, this study indicates an important role of ChIL-22 on epithelial cells and hepatocytes during inflammation.


Assuntos
Células Epiteliais/imunologia , Hepatócitos/imunologia , Inflamação/imunologia , Interleucinas/genética , Interleucinas/imunologia , Receptores de Interleucina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células , Embrião de Galinha , Galinhas/imunologia , Fibroblastos , Interleucinas/química , Interleucinas/metabolismo , Leucócitos Mononucleares/imunologia , Dados de Sequência Molecular , Receptores de Interleucina/química , Receptores de Interleucina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Distribuição Tecidual , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA