Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(3): 273, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363433

RESUMO

Plastic pollution is a ubiquitous problem that poses a threat to society and the environment. The issue is especially pervasive in the aquatic environment, where large amounts of plastic debris accumulate from numerous anthropogenic pathways. Relatively little is known about the extent of macroplastics in African subtropical Austral rivers, where management strategies are lacking. This study quantifies and compares the variation in macroplastic abundances along the Mvudi River, South Africa, over four sites and four seasons. We observed a non-significant difference in macroplastic abundance and variation across sites and seasons, with pollution therefore widespread across these contexts. However, the diversity of plastic debris (i.e. γ-diversity value) decreased generally along sites, with most macroplastic items being collected during winter, and fewer macroplastic during autumn. We observed high abundances of macroplastic debris on the shoreline compared to the mainstream, with high proportional abundances of plastic bags and film (> 57.8%) macroplastic physical type across all sites and seasons. We also observed a high proportional abundance of the polymer polypropylene (> 25.3%) across seasons. The information derived from this study serves as the baseline for understanding seasonal variations in plastic debris and their driving factors on this and other subtropical Austral rivers.


Assuntos
Plásticos , Poluentes Químicos da Água , Rios , Resíduos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Environ Monit Assess ; 196(4): 401, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538854

RESUMO

Effective water resources management and monitoring are essential amid increasing challenges posed by population growth, industrialization, urbanization, and climate change. Earth observation techniques offer promising opportunities to enhance water resources management and support informed decision-making. This study utilizes Landsat-8 OLI and Sentinel-2 MSI satellite data to estimate chlorophyl-a (chl-a) concentrations in the Nandoni reservoir, Thohoyandou, South Africa. The study estimated chl-a concentrations using random forest models with spectral bands only, spectral indices only (blue difference absorption (BDA), fluorescence line height in the violet region (FLH_violet), and normalized difference chlorophyll index (NDCI)), and combined spectral bands and spectral indices. The results showed that the models using spectral bands from both Landsat-8 OLI and Sentinel-2 MSI performed comparably. The model using Sentinel-2 MSI had a higher accuracy of estimating chl-a when spectral bands alone were used. Sentinel-2 MSI's additional red-edge spectral bands provided a notable advantage in capturing subtle variations in chl-a concentrations. Lastly, the -chl-a concentration was higher at the edges of the Nandoni reservoir and closer to the reservoir wall. The findings of this study are crucial for improving the management of water reservoirs, enabling proactive decision-making, and supporting sustainable water resource management practices. Ultimately, this research contributes to the broader understanding of the application of earth observation techniques for water resources management, providing valuable information for policymakers and water authorities.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Clorofila A , Monitoramento Ambiental/métodos , Clorofila/análise , Água
3.
Ecol Evol ; 14(4): e11198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571809

RESUMO

Microplastics are widespread pollutants, but few studies have linked field prevalence in organisms to laboratory uptakes. Aquatic filter feeders may be particularly susceptible to microplastic uptake, with the potential for trophic transfer to higher levels, including humans. Here, we surveyed microplastics from a model freshwater shrimp, common caraidina (Caridina nilotica) inhabiting the Crocodile River in South Africa to better understand microplastic uptake rates per individual. We then use functional response analysis (feeding rate as a function of resource density) to quantify uptake rates by shrimps in the laboratory. We found that microplastics were widespread in C. nilotica, with no significant differences in microplastic abundances among sampled sites under varying land uses, with an average abundance of 6.2 particles per individual. The vast majority of microplastics found was fibres (86.1%). Shrimp microplastic accumulation patterns were slightly higher in the laboratory than the field, where shrimp exhibited a hyperbolic Type II functional response model under varying exposure concentrations. Maximum feeding rates of 20 particles were found over a 6 h feeding period, and uptake evidenced at even the lowest laboratory concentrations (~10 particles per mL). These results highlight that microplastic uptake is widespread in field populations and partly density dependent, with field concentrations corroborating uptake rates recorded in the laboratory. Further research is required to elucidate trophic transfer from these taxa and to understand potential physiological impacts.

4.
Environ Sci Pollut Res Int ; 31(19): 28549-28563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561533

RESUMO

Floodplain pans are hydrologically dynamic in nature and characterised by variables such as chlorophyll-a (chl-a), water, and sediment chemistry over their hydroperiods. The present study investigated the spatio-temporal variations in water and sediment physico-chemical, and chlorophyll-a concentration characteristics of six floodplain pans found in the Ramsar declared Makuleke wetlands, Kruger National Park, South Africa. The water and sediment physico-chemical variable values were generally elevated during the high-water period, whereas chlorophyll-a concentrations varied across pans and hydroperiod. Benthic chl-a concentration significantly varied across pans with concentrations ranging from 161 to 1036.2 mg m2. The two-way ANOVA showed significant differences in benthic chl-a concentration among hydroperiods, and no significant differences were observed in pelagic chl-a across pans and hydroperiods. Generally, pelagic and benthic chl-a concentration increased as water and sediment chemistry variables increased. Furthermore, three sediment variables, i.e. pH, calcium, and magnesium, and water conductivity were found to be significant in structuring benthic chlorophyll-a dynamics in pans. However, none of the sediment and water variables had a significant effect on pelagic chl-a. Hydroperiod had a significant effect on influencing chl-a concentration, with high and low water level periods being characterised by low and high chl-a concentration, respectively. The n-MDS results showed strong overlaps in chl-a biomass among the Makuleke floodplain pans across hydroperiods. The increasing chl-a concentration in these floodplain pans due to potential bioturbation effects as a result of large mammals could potentially lead to eutrophication, which in turn could affect the system's primary productivity and aquatic biota. Therefore, it is important to establish a continuous monitoring programme on these pans to inform sound management decisions.


Assuntos
Clorofila A , Monitoramento Ambiental , Sedimentos Geológicos , Áreas Alagadas , Sedimentos Geológicos/química , África do Sul , Clorofila , Água/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-39016676

RESUMO

Pollution of the natural environment by microplastics has become a global issue in ecosystems as it poses a potential long-term threat to biota. Microplastics can accrue in high abundances in sediments of aquatic ecosystems while also contaminating pelagic filter feeders, which could transfer pollutants up trophic webs. We assess the abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir using a combination of geospatial techniques, physicochemical analyses, diversity indices, and multivariate statistics between two seasons (i.e., hot-wet and cool-dry). We found particularly high densities of microplastics during the cool-dry season for both sediments (mean 224.1 vs. 189 particles kg-1 dry weight) and Cladocera taxa (0.3 particles per individual). Cladocera microplastic shapes were dominated by fibers with high densities of the transparent color scheme. Pearson correlation results indicated that sediment microplastic abundances were negatively correlated with chlorophyll-a concentration, temperature, and resistivity, whereas they were positively correlated with pH and salinity during the hot-wet season, with no variables significant in the cool-dry season. Cladocera microplastic abundances were positively correlated with conductivity and salinity during the cool-dry season, but no variables in the hot-wet season. These findings provide insights into the role of reservoirs as microplastic retention sites and the potential for uptake and transfer from lower trophic groups. These insights can be used to strengthen future monitoring and intervention strategies. Integr Environ Assess Manag 2024;1-15. © 2024 SETAC.

6.
Sci Total Environ ; 932: 173059, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723976

RESUMO

Microbial extracellular polymeric substances (EPS) are an important component in sediment ecology. However, most research is highly skewed towards the northern hemisphere and in more permanent systems. This paper investigates EPS (i.e., carbohydrates and proteins) dynamics in arid Austral zone temporary pans sediments. Colorimetric methods and sequence-based metagenomics techniques were employed in a series of small temporary pan ecosystems characterised by alternating wet and dry hydroperiods. Microbial community patterns of distribution were evaluated between seasons (hot-wet and cool-dry) and across depths (and inferred inundation period) based on estimated elevation. Carbohydrates generally occurred in relatively higher proportions than proteins; the carbohydrate:protein ratio was 2.8:1 and 1.6:1 for the dry and wet season respectively, suggesting that EPS found in these systems was largely diatom produced. The wet- hydroperiods (Carbohydrate mean 102 µg g-1; Protein mean 65 µg g-1) supported more EPS production as compared to the dry- hydroperiods (Carbohydrate mean 73 µg g-1; Protein mean 26 µg g-1). A total of 15,042 Unique Amplicon Sequence Variants (ASVs) were allocated to 51 bacterial phyla and 1127 genera. The most abundant genera had commonality in high temperature tolerance, with Firmicutes, Actinobacteria and Proteobacteria in high abundances. Microbial communities were more distinct between seasons compared to within seasons which further suggested that the observed metagenome functions could be seasonally driven. This study's findings implied that there were high levels of denitrification by mostly nitric oxide reductase and nitrite reductase enzymes. EPS production was high in the hot-wet season as compared to relatively lower rates of nitrification in the cool-dry season by ammonia monooxygenases. Both EPS quantities and metagenome functions were highly associated with availability of water, with high rates being mainly associated with wet- hydroperiods compared to dry- hydroperiods. These data suggest that extended dry periods threaten microbially mediated processes in temporary wetlands, with implications to loss of biodiversity by desiccation.


Assuntos
Ecossistema , Matriz Extracelular de Substâncias Poliméricas , Microbiota , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/classificação , Bactérias/genética , Estações do Ano , Monitoramento Ambiental
7.
Biol Rev Camb Philos Soc ; 99(4): 1357-1390, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38500298

RESUMO

Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.


Assuntos
Espécies Introduzidas , Terminologia como Assunto , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA