Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 291(4): 2018-2032, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26601940

RESUMO

Some of the most prevalent neurodegenerative diseases are characterized by the accumulation of amyloid fibrils in organs and tissues. Although the pathogenic role of these fibrils has not been completely established, increasing evidence suggests off-pathway aggregation as a source of toxic/detoxicating deposits that still remains to be targeted. The present work is a step toward the development of off-pathway modulators using the same amyloid-specific dyes as those conventionally employed to screen amyloid inhibitors. We identified a series of kinetic signatures revealing the quantitative importance of off-pathway aggregation relative to amyloid fibrillization; these include non-linear semilog plots of amyloid progress curves, highly variable end point signals, and half-life coordinates weakly influenced by concentration. Molecules that attenuate/intensify the magnitude of these signals are considered promising off-pathway inhibitors/promoters. An illustrative example shows that amyloid deposits of lysozyme are only the tip of an iceberg hiding a crowd of insoluble aggregates. Thoroughly validated using advanced microscopy techniques and complementary measurements of dynamic light scattering, CD, and soluble protein depletion, the new analytical tools are compatible with the high-throughput methods currently employed in drug discovery.


Assuntos
Amiloide/metabolismo , Amiloide/química , Dicroísmo Circular , Meia-Vida , Cinética , Agregados Proteicos , Estrutura Terciária de Proteína
2.
J Mol Recognit ; 30(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808434

RESUMO

Toxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of aggregation associated with the formation of amyloid fibrils. Despite their relevance, the heterogeneity and transience of these oligomers have placed great barriers in our understanding of their structural properties. Among amyloid intermediates, annular oligomers or annular protofibrils have raised considerable interest because they may contribute to a mechanism of cellular toxicity via membrane permeation. Here we investigated, by using AFM force spectroscopy, the structural detail of amyloid annular oligomers from transthyretin (TTR), a protein involved in systemic and neurodegenerative amyloidogenic disorders. Manipulation was performed in situ, in the absence of molecular handles and using persistence length-fit values to select relevant curves. Force curves reveal the presence of dimers in TTR annular oligomers that unfold via a series of structural intermediates. This is in contrast with the manipulation of native TTR that was more often manipulated over length scales compatible with a TTR monomer and without unfolding intermediates. Imaging and force spectroscopy data suggest that dimers are formed by the assembly of monomers in a head-to-head orientation with a nonnative interface along their ß-strands. Furthermore, these dimers stack through nonnative contacts that may enhance the stability of the misfolded structure.


Assuntos
Amiloide/química , Microscopia de Força Atômica/métodos , Pré-Albumina/química , Espectrofotometria Atômica/métodos , Dimerização , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Desdobramento de Proteína
3.
Proc Natl Acad Sci U S A ; 108(14): 5584-9, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21422279

RESUMO

Transthyretin (TTR) is a homotetrameric protein that transports thyroxine and retinol. Tetramer destabilization and misfolding of the released monomers result in TTR aggregation, leading to its deposition as amyloid primarily in the heart and peripheral nervous system. Over 100 mutations of TTR have been linked to familial forms of TTR amyloidosis. Considerable effort has been devoted to the study of TTR aggregation of these mutants, although the majority of TTR-related amyloidosis is represented by sporadic cases due to the aggregation and deposition of the otherwise stable wild-type (WT) protein. Heparan sulfate (HS) has been found as a pertinent component in a number of amyloid deposits, suggesting its participation in amyloidogenesis. This study aimed to investigate possible roles of HS in TTR aggregation. Examination of heart tissue from an elderly cardiomyopathic patient revealed substantial accumulation of HS associated with the TTR amyloid deposits. Studies demonstrated that heparin/HS promoted TTR fibrillization through selective interaction with a basic motif of TTR. The importance of HS for TTR fibrillization was illustrated in a cell model; TTR incubated with WT Chinese hamster ovary cells resulted in fibrillization of the protein, but not with HS-deficient cells (pgsD-677). The effect of heparin on TTR fibril formation was further demonstrated in a Drosophila model that overexpresses TTR. Heparin was colocalized with TTR deposits in the head of the flies reared on heparin-supplemented medium, whereas no heparin was detected in the nontreated flies. Heparin of low molecular weight (Klexane) did not demonstrate this effect.


Assuntos
Amiloide/biossíntese , Amiloidose Familiar/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Pré-Albumina/metabolismo , Amiloidose Familiar/etiologia , Animais , Células CHO , Cricetinae , Cricetulus , Drosophila melanogaster , Humanos , Imuno-Histoquímica , Miocárdio/metabolismo , Miocárdio/patologia
4.
J Biol Chem ; 287(36): 30585-94, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22767606

RESUMO

Associated with neurodegenerative disorders such as Alzheimer, Parkinson, or prion diseases, the conversion of soluble proteins into amyloid fibrils remains poorly understood. Extensive "in vitro" measurements of protein aggregation kinetics have been reported, but no consensus mechanism has emerged until now. This contribution aims at overcoming this gap by proposing a theoretically consistent crystallization-like model (CLM) that is able to describe the classic types of amyloid fibrillization kinetics identified in our literature survey. Amyloid conversion represented as a function of time is shown to follow different curve shapes, ranging from sigmoidal to hyperbolic, according to the relative importance of the nucleation and growth steps. Using the CLM, apparently unrelated data are deconvoluted into generic mechanistic information integrating the combined influence of seeding, nucleation, growth, and fibril breakage events. It is notable that this complex assembly of interdependent events is ultimately reduced to a mathematically simple model, whose two parameters can be determined by little more than visual inspection. The good fitting results obtained for all cases confirm the CLM as a good approximation to the generalized underlying principle governing amyloid fibrillization. A perspective is presented on possible applications of the CLM during the development of new targets for amyloid disease therapeutics.


Assuntos
Amiloide/química , Modelos Químicos , Modelos Moleculares , Amiloide/metabolismo , Humanos , Cinética , Doenças Neurodegenerativas/metabolismo
5.
Biochem J ; 443(3): 769-78, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22332999

RESUMO

TTR (transthyretin) was found recently to possess proteolytic competency besides its well-known transport capabilities. It was described as a cryptic serine peptidase cleaving multiple natural substrates (including ß-amyloid and apolipoprotein A-I) involved in diseases such as Alzheimer's disease and atherosclerosis. In the present study, we aimed to elucidate the catalytic machinery of TTR. All attempts to identify a catalytic serine residue were unsuccessful. However, metal chelators abolished TTR activity. Proteolytic inhibition by EDTA or 1,10-phenanthroline could be reversed with Zn2+ and Mn2+. These observations, supported by analysis of three-dimensional structures of TTR complexed with Zn2+, led to the hypothesis that TTR is a metallopeptidase. Site-directed mutagenesis of selected amino acids unambiguously confirmed this hypothesis. The TTR active site is inducible and constituted via a protein rearrangement resulting in ~7% of proteolytically active TTR at pH 7.4. The side chain of His88 is shifted near His90 and Glu92 establishing a Zn2+-chelating pattern HXHXE not found previously in any metallopeptidase and only conserved in TTR of humans and some other primates. Point mutations of these three residues yielded proteins devoid of proteolytic activity. Glu72 was identified as the general base involved in activation of the catalytic water. Our results unveil TTR as a metallopeptidase and define its catalytic machinery.


Assuntos
Metaloproteases/metabolismo , Pré-Albumina/metabolismo , Domínio Catalítico , Cromatografia em Gel , Concentração de Íons de Hidrogênio , Cinética , Pré-Albumina/química , Conformação Proteica , Proteólise
6.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 12): 1035-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22120741

RESUMO

Human transthyretin (TTR) is a homotetrameric protein that is responsible for the formation of amyloid in patients with familiar amyloidotic polyneuropathy (FAP), familiar amyloidotic cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Amyloid fibrils are characterized by a cross-ß structure. However, details of how TTR monomers are organized to form such an assembly remain unknown. The effect of Zn(2+) in increasing TTR L55P amyloidogenecity has been reported. Crystals of the TTR L55P-Zn(2+) complex were grown under conditions similar to those leading to higher amyloidogenic potential of the variant protein and the three-dimensional structure of the complex was determined by X-ray crystallography. Two different tetrahedral Zn(2+)-binding sites were identified: one cross-links two tetramers, while the other lies at the interface between two monomers in a dimer. The association of monomers involving the two Zn(2+)-binding sites leads to a bidimensional array with a cross-ß structure. The formation of this structure and subsequent organization into amyloid fibrils was monitored by fluorescence spectroscopy and electron microscopy. The TTR L55P-Zn(2+) structure offers the first molecular insights into the role of Zn(2+) as a mediator of cross-ß-type structure in TTR amyloidosis and the relevance of a Zn(2+)-dependent pathway leading to the production of early amyloidogenic intermediates is discussed.


Assuntos
Amiloide/química , Pré-Albumina/química , Zinco/química , Amiloide/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutação , Pré-Albumina/genética , Pré-Albumina/metabolismo , Pré-Albumina/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Zinco/metabolismo
7.
J Mol Recognit ; 24(3): 467-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21504025

RESUMO

Transthyretin (TTR) is an important human transport protein present in the serum and the cerebrospinal fluid. Aggregation of TTR in the form of amyloid fibrils is associated with neurodegeneration, but the mechanisms of cytotoxicity are likely to stem from the presence of intermediate assembly states. Characterization of these intermediate species is therefore essential to understand the etiology and pathogenesis of TTR-related amyloidoses. In the present work we used atomic force microscopy to investigate the morphological features of wild-type (WT) TTR amyloid protofibrils that appear in the early stages of aggregation. TTR protofibrils obtained by mild acidification appeared as flexible filaments with variable length and were able to bind amyloid markers (thioflavin T and Congo red). Surface topology and contour-length distribution displayed a periodic pattern of ∼ 15 nm, suggesting that the protofibrils assemble via an end-binding oligomer fusion mechanism. The average height and periodic substructure found in protofibrils is compatible with the double-helical model of the TTR amyloid protofilament. Over time protofibrils aggregated into bundles and did not form mature amyloid-like fibrils. Unlike amyloid fibrils that are typically stable under physiological conditions, the bundles dissociated into component protofibrils with axially compacted and radially dilated structure when exposed to phosphate-buffered saline solution. Thus, WT TTR can form metastable filamentous aggregates that may represent an important transient state along the pathway towards the formation of cytotoxic TTR species.


Assuntos
Amiloide/química , Microscopia de Força Atômica/métodos , Pré-Albumina/química
8.
BMC Plant Biol ; 10: 30, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20167108

RESUMO

BACKGROUND: Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. RESULTS: The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. CONCLUSIONS: The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.


Assuntos
Arabidopsis/genética , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Clonagem Molecular , Proteínas de Membrana/genética , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 11): o2718-9, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21578316

RESUMO

In the title compound, C(18)H(16)O(4), a monoprenylated xanthone, the xanthone skeleton exhibits an essentially planar conformation (r.m.s. deviation 0.0072 Å) and the isoprenyl side chain remains approximately in the mean plane of the xanthone unit, making a dihedral angle of 4.5 (2)°. The hydroxyl group forms an intra-molecular O-H⋯O hydrogen bond. Moreover, there is a weak inter-molecular C-H⋯O inter-action between a ring C atom and the xanthene O atom. In the crystal structure, there are no inter-molecular hydrogen bonds and the crystallographic packing is governed by van der Waals forces, leading to an arrangement in which the mol-ecules assemble with their planes parallel to each other, having a separation of 3.6 (3) Å.

10.
Chem Asian J ; 14(4): 500-508, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644650

RESUMO

Insoluble aggregates staining positive to amyloid dyes are known histological hallmarks of different neurodegenerative disorders and of type II diabetes. Soluble oligomers are smaller assemblies whose formation prior to or concomitant with amyloid deposition has been associated to the processes of disease propagation and cell death. While the pathogenic mechanisms are complex and differ from disease to disease, both types of aggregates are important biological targets subject to intense investigation in academia and industry. Here we review recent advances in the fundamental understanding of protein aggregation that can be used on the development of anti-amyloid and anti-oligomerization drugs. Specifically, we pinpoint the chemical kinetic aspects that should be attended during the development of high-throughput screening assays and in the hit validation phase. The strategies here devised are expected to establish a connection between basic research and pharmaceutical innovation.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Multimerização Proteica/efeitos dos fármacos , Humanos , Cinética
11.
Biochim Biophys Acta ; 1774(1): 59-64, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17175208

RESUMO

Transthyretin (TTR) is a plasma protein, which under conditions not yet completely understood, aggregates forming amyloid deposits that occur extracellularly. It is a protein composed of four identical subunits. Each monomer has a single cysteine residue (Cys10), which in the plasma is reduced (Cys-SH), oxidized (Cys-SO3-), sulfonated (Cys-S-SO3-) or bound to various sulfhydryls. There is evidence that these chemical modifications of the SH group alter the stability and the amyloidogenic potential of the protein. The sulfonated form was found to enhance the stability of the native conformation of TTR, avoiding misassembly of the protein leading to amyloid. Consequently, the potential treatment of TTR-type amyloidosis by sulfite has been suggested. The structure of TTR pre-incubated with sulfite at physiological pH, was determined by X-ray crystallography to provide structural insight for the stabilizing effect of sulfite. Each subunit has a beta-sandwich conformation, with two four stranded beta-pleated sheets (DAGH and CBEF) and a small alpha-helix between strands. The sulfonated cysteines have two sulfite oxygens involved in intramonomer hydrogen bonds that bridge Cys10, the amino acid immediately before beta-strand A, to the amino acids immediately after the edge beta-strand D. Implications of the newly observed interactions in the inhibition of fibril formation are discussed in light of the recent structural models of TTR amyloid fibrils.


Assuntos
Amiloide/biossíntese , Pré-Albumina/metabolismo , Sulfitos/farmacologia , Cristalografia por Raios X , Conformação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína
12.
Cell Physiol Biochem ; 22(1-4): 79-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18769034

RESUMO

BACKGROUND: About 98% of male affected with cystic fibrosis (CF [MIM 219700]) are infertile due to bilateral absence of vas deferens (CBAVD [MIM 277180]), which makes up 1-2 % of all cases with male infertility. A previous screening of the entire coding region of the cystic fibrosis transmembrane conductance regulator gene (CFTR [MIM 602421]) in CBAVD patients identified three novel mutations: P439S is located in the first nucleotide binding domain (NBD1) of CFTR, whereas P1290S and E1401K are located in NBD2. METHODS: We analysed the effects of these novel mutations on CFTR processing and chloride (Cl(-)) channel activity. RESULTS: Although maturation patterns were not affected, total amounts of mature P439S-CFTR and P1290S-CFTR were reduced. Confocal microscopy showed correct membrane localisation of E1401K-CFTR, whereas P439S-CFTR and P1290S-CFTR mutants were located mainly in the cytoplasm. Iodide influx assay and whole-cell patch clamp demonstrated significantly reduced cAMP-dependent anion conductances for all three mutants. CONCLUSION: Dysfunction of CFTR is caused by either defective CFTR trafficking (P439S and P1290S) or/and Cl- channel function (P1290S and E1401K). Thus reduced Cl- conductance caused by the three CFTR mutations affects normal development of vas deferens and leads to CBAVD, but the remaining function is sufficient to prevent other typical CF symptoms.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Doenças dos Genitais Masculinos/congênito , Doenças dos Genitais Masculinos/genética , Mutação de Sentido Incorreto/genética , Nucleotídeos/metabolismo , Ducto Deferente/anormalidades , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Análise Mutacional de DNA , Genótipo , Humanos , Ativação do Canal Iônico , Masculino , Dados de Sequência Molecular , Proteínas Mutantes/biossíntese , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência
13.
J Phys Chem B ; 121(10): 2288-2298, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28221799

RESUMO

The study of drug candidates for the treatment of amyloidosis and neurodegenerative diseases frequently involves in vitro measurements of amyloid fibril formation. Macromolecular crowding and off-pathway aggregation (OPA) are, by different reasons, two important phenomena affecting the scalability of amyloid inhibitors and their successful application in vivo. On the one hand, the cellular milieu is crowded with macromolecules that drastically increase the effective (thermodynamic) concentration of the amyloidogenic protein. On the other hand, off-pathway aggregates, rather than amyloid fibrils, are increasingly appointed as causative agents of toxicity. The present contribution reveals that insoluble off-pathway aggregates of hen egg-white lysozyme (HEWL) are a peculiar type of crowding agents that, unlike classical macromolecular crowders, decrease the thermodynamic concentration of protein. Illustrating this effect, OPA is shown to resume after lowering the fraction of insoluble aggregates at a constant soluble HEWL concentration. Protein depletion and thioflavin-T fluorescence progress curves indicate that OPA rebirth is not accompanied by additional amyloid fibril formation. The crystallization-like model extended to account for OPA and time-dependent activity coefficients is able to fit multiple kinetic results using a single set of three parameters describing amyloid nucleation, autocatalytic growth, and off-pathway nucleation. The list of fitted results notably includes the cases of aggregation rebirth and all types of progress curves measured for different HEWL concentrations. The quantitative challenges posed by macromolecular crowding and OPA find here a unified response with broader implications for the development of on- and off-pathway inhibitors.


Assuntos
Amiloide/química , Muramidase/química , Multimerização Proteica , Animais , Galinhas , Cinética , Solubilidade , Termodinâmica
14.
Biochem Pharmacol ; 70(12): 1861-9, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16236271

RESUMO

A series of xanthone derivatives, isolated from Calophyllum teysmannii var. inophylloide, have been evaluated for their binding affinity to transthyretin. Transthyretin is a plasma protein involved in the transport of thyroxine (T4) and also implicated in amyloid diseases. Using competition-binding studies with the protein natural ligand T4, we have identified one prenylated xanthone with a very strong affinity to transthyretin. Molecular docking simulations show that the flexible tail of the prenylated xanthone could allow favorable molecular interactions. Since this xanthone may play a role in the thyroxine metabolism and/or over the pathogenic process associated with the amyloid disease, these results may be explored for the design of new ligands.


Assuntos
Pré-Albumina/metabolismo , Xantonas/metabolismo , Ligação Competitiva , Cristalografia , Humanos , Pré-Albumina/química , Relação Estrutura-Atividade , Xantonas/química , Xantonas/farmacologia
16.
FEBS J ; 282(12): 2309-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808291

RESUMO

The methodology adopted by Michaelis and Menten in 1913 is still routinely used to characterize the catalytic power and selectivity of enzymes. These kinetic measurements must be performed soon after the purified enzyme is mixed with a large excess of substrate. Other time scales and solution compositions are no less physiologically relevant, but fall outside the range of applicability of the classical formalism. Here we show that the complete picture of an enzyme's mode of function is critically obscured by the limited scope of conventional kinetic analysis, even in the simplest case of a single active site without inhibition. This picture is now unveiled in a mathematically closed form that remains valid over the reaction time for all combinations of enzyme/substrate concentrations and rate constants. Algebraic simplicity is maintained in the new formalism when stationary reaction phases are considered. By achieving this century-old objective, the otherwise hidden role of the reversible binding step is revealed and atypical kinetic profiles are explained. Most singular kinetic behaviors are identified in a critical region of conditions that coincide with typical cell conditions. Because it is not covered by the Michaelis-Menten model, the critical region has been missed until now by low- and high-throughput screenings of new drugs. New possibilities are therefore raised for novel and once-promising inhibitors to therapeutically target enzymes.


Assuntos
Biocatálise/efeitos dos fármacos , Enzimas/metabolismo , Modelos Moleculares , Algoritmos , Animais , Galinhas , Proteínas de Escherichia coli/metabolismo , Galactosidases/metabolismo , Cinética , Muramidase/metabolismo
17.
Food Res Int ; 64: 134-140, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30011632

RESUMO

The aim of this work was to investigate the possibility of producing microparticles containing ß-galactosidase, using different biopolymers (arabic gum, chitosan, modified chitosan, calcium alginate and sodium alginate) as encapsulating agents by a spray-drying process. This study focused on the enzyme ß-galactosidase, due to its importance in health and in food processing. Encapsulation of ß-galactosidase can increase the applicability of this enzyme in different processes and applications. A series of ß-galactosidase microparticles were prepared, and their physicochemical structures were analyzed by laser granulometry analysis, zeta potential analysis, and by scanning electron microscopy (SEM). Microparticles with a mean diameter around 3µm have been observed, for all the biopolymers tested. The microparticles formed with chitosan or arabic gum presented a very rough surface; on the other hand, the particles formed with calcium or sodium alginate or modified chitosan presented a very smooth surface. The activity of the enzyme was studied by spectrophotometric methods using the substrate ONPG (O-nitrophenyl-ß,d-galactopyranoside). The microencapsulated ß-galactosidase activity decreases with all the biopolymers. The relative enzyme activity is 37, 20, 20 and 13%, for arabic gum, modified chitosan, calcium alginate and sodium alginate, respectively, when compared with the free enzyme activity. The enzyme microparticles formed with arabic gum shows the smallest decrease of Vmax, followed by the calcium alginate, sodium alginate, and modified chitosan.

18.
PLoS One ; 7(9): e44992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984597

RESUMO

BACKGROUND: Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR) amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16 ± 2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8-16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway. CONCLUSIONS/SIGNIFICANCE: Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.


Assuntos
Amiloide/química , Placa Amiloide/química , Pré-Albumina/química , Multimerização Proteica , Amiloide/metabolismo , Amiloidose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luz , Microscopia de Força Atômica , Modelos Moleculares , Placa Amiloide/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação
19.
FEBS J ; 277(24): 5072-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21078120

RESUMO

Vaccine and drug development for fasciolasis rely on a thorough understanding of the mechanisms involved in parasite-host interactions. FH8 is an 8 kDa protein secreted by the parasite Fasciola hepatica in the early stages of infection. Sequence analysis revealed that FH8 has two EF-hand Ca(2+)-binding motifs, and our experimental data show that the protein binds Ca(2+) and that this induces conformational alterations, thus causing it to behave like a sensor protein. Moreover, FH8 displays low affinity for Ca(2+) (K(obs) = 10(4) m(-1)) and is highly stable in its apo and Ca(2+)-loaded states. Homology models were built for FH8 in both states. It has only one globular domain, with two binding sites and appropriate groups in the positions for coordination of the metal ions. However, an unusually high content of positively charged amino acids in one of the binding sites, when compared with the prototypical sensor proteins, potentially affects the protein's affinity for Ca(2+). The only Cys present in FH8, conserved in the homologous proteins of other helminth parasites, is located on the surface, allowing the formation of dimers, detected on SDS gels. These findings reflect specificities of FH8, which are most probably related to its roles both in the parasite and in the host.


Assuntos
Motivos EF Hand , Fasciola hepatica/metabolismo , Proteínas de Helminto/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Proteínas de Helminto/química , Proteínas de Helminto/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
20.
Eur J Med Chem ; 44(9): 3830-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19428155

RESUMO

In a study involving the synthesis of bis-intercalators, a bisxanthone and a minor product, 1-(6-bromohexyloxy)-xanthone were obtained. Although no capacity to inhibit the growth of human tumor cell lines was observed for the bisxanthone, the bromoalkoxyxanthone revealed this biological activity. In light of these results bromoalkylation of 3,4-dihydroxyxanthone furnished two bromohexyloxyxanthones that were investigated for their effect on the in vitro growth of human tumor cell lines MCF-7 (ER+, breast), MDA-MB-231 (ER-, breast), NCI-H460 (non-small lung), and SF-268 (central nervous system). The X-ray structure of 1-(6-bromohexyloxy)-xanthone revealed that the xanthone skeleton remains essentially planar forming a dihedral angle of 61.3(2) degrees with the 6-bromohexyl side chain. These results revealed bromoalkoxyxanthones as interesting scaffolds to look for potential anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Xantonas/química , Xantonas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Xantonas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA