Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474126

RESUMO

CD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described CD177 c.1291G>A variant on CD177 expression. Recombinant CD177 c.1291G>A was expressed in HEK293F cells and its expression on the cell surface, inside the cell, and in the culture supernatant was investigated. The CD177 c.1291G>A protein was characterised serologically and its interaction with proteinase 3 (PR3) was demonstrated by confocal laser scanning microscopy. Our experiments show that CD177 c.1291G>A does not interfere with CD177 protein biosynthesis but affects the membrane expression of CD177, leading to very low copy numbers of the protein on the cellular surface. The mutation does not interfere with the ability of the protein to bind PR3 or human polyclonal antibodies against wild-type CD177. Carriers of the c.1291G>A allele are supposed to be phenotyped as CD177-negative, but the protein is present in soluble form. The presence of CD177 c.1291A leads to the production of an unstable CD177 protein and an apparent "CD177-null" phenotype.


Assuntos
Isoantígenos , Receptores de Superfície Celular , Humanos , Receptores de Superfície Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Alelos , Membrana Celular/metabolismo , Mieloblastina/genética , Fenótipo , Isoantígenos/genética , Neutrófilos/metabolismo
2.
Int J Mol Sci ; 18(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039788

RESUMO

Epigenetic inactivation of tumor suppressor genes (TSG) is a fundamental event in the pathogenesis of human cancer. This silencing is accomplished by aberrant chromatin modifications including DNA hypermethylation of the gene promoter. One of the most frequently hypermethylated TSG in human cancer is the Ras Association Domain Family 1A (RASSF1A) gene. Aberrant methylation of RASSF1A has been reported in melanoma, sarcoma and carcinoma of different tissues. RASSF1A hypermethylation has been correlated with tumor progression and poor prognosis. Reactivation of epigenetically silenced TSG has been suggested as a therapy in cancer treatment. In particular, natural compounds isolated from herbal extracts have been tested for their capacity to induce RASSF1A in cancer cells, through demethylation. Here, we review the treatment of cancer cells with natural supplements (e.g., methyl donors, vitamins and polyphenols) that have been utilized to revert or prevent the epigenetic silencing of RASSF1A. Moreover, we specify pathways that were involved in RASSF1A reactivation. Several of these compounds (e.g., reseveratol and curcumin) act by inhibiting the activity or expression of DNA methyltransferases and reactive RASSF1A in cancer. Thus natural compounds could serve as important agents in tumor prevention or cancer therapy. However, the exact epigenetic reactivation mechanism is still under investigation.


Assuntos
Produtos Biológicos/farmacologia , Metilação de DNA/efeitos dos fármacos , Genes Supressores de Tumor , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Animais , Citidina/farmacologia , Citidina/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polifenóis/farmacologia , Vitaminas/farmacologia
3.
BMC Cancer ; 16: 49, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833217

RESUMO

BACKGROUND: Dual specificity phosphatases are a class of tumor-associated proteins involved in the negative regulation of the MAP kinase pathway. Downregulation of the dual specificity phosphatase 2 (DUSP2) has been reported in cancer. Epigenetic silencing of tumor suppressor genes by abnormal promoter methylation is a frequent mechanism in oncogenesis. It has been shown that the epigenetic factor CTCF is involved in the regulation of tumor suppressor genes. METHODS: We analyzed the promoter hypermethylation of DUSP2 in human cancer, including primary Merkel cell carcinoma by bisulfite restriction analysis and pyrosequencing. Moreover we analyzed the impact of a DNA methyltransferase inhibitor (5-Aza-dC) and CTCF on the epigenetic regulation of DUSP2 by qRT-PCR, promoter assay, chromatin immuno-precipitation and methylation analysis. RESULTS: Here we report a significant tumor-specific hypermethylation of DUSP2 in primary Merkel cell carcinoma (p = 0.05). An increase in methylation of DUSP2 was also found in 17 out of 24 (71%) cancer cell lines, including skin and lung cancer. Treatment of cancer cells with 5-Aza-dC induced DUSP2 expression by its promoter demethylation, Additionally we observed that CTCF induces DUSP2 expression in cell lines that exhibit silencing of DUSP2. This reactivation was accompanied by increased CTCF binding and demethylation of the DUSP2 promoter. CONCLUSIONS: Our data show that aberrant epigenetic inactivation of DUSP2 occurs in carcinogenesis and that CTCF is involved in the epigenetic regulation of DUSP2 expression.


Assuntos
Carcinoma de Célula de Merkel/genética , Metilação de DNA/genética , Fosfatase 2 de Especificidade Dupla/genética , Epigênese Genética , Proteínas Repressoras/genética , Fator de Ligação a CCCTC , Carcinoma de Célula de Merkel/patologia , Linhagem Celular Tumoral , Ilhas de CpG/genética , Fosfatase 2 de Especificidade Dupla/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Regiões Promotoras Genéticas , Proteínas Repressoras/biossíntese
4.
Int J Mol Sci ; 17(1)2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26742039

RESUMO

Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5'-external transcribed spacer/5'ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5'ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5'ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD.


Assuntos
Transtorno da Personalidade Borderline/genética , Metilação de DNA , DNA Ribossômico/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Adolescente , Adulto , Transtorno da Personalidade Borderline/patologia , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
5.
Int J Mol Sci ; 16(3): 4492-511, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25723738

RESUMO

The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4) was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC) and Clara cell-specific 10 kDA protein (Scgb1a1), normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pulmão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Tubulina (Proteína)/genética , Actinas/genética , Animais , Animais Recém-Nascidos , Sequência de Bases , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/genética , Histonas/genética , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Gravidez , RNA Ribossômico 18S/genética , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
6.
Genes (Basel) ; 15(2)2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397165

RESUMO

For several decades, cancers have demonstrably been one of the most frequent causes of death worldwide. In addition to genetic causes, cancer can also be caused by epigenetic gene modifications. Frequently, tumor suppressor genes are epigenetically inactivated due to hypermethylation of their CpG islands, actively contributing to tumorigenesis. Since CpG islands are usually localized near promoters, hypermethylation of the promoter can have a major impact on gene expression. In this study, the potential tumor suppressor gene Receptor Interacting Serine/Threonine Protein Kinase 3 (RIPK3) was examined for an epigenetic regulation and its gene inactivation in melanomas. A hypermethylation of the RIPK3 CpG island was detected by bisulfite pyrosequencing and was accompanied by a correlated loss of its expression. In addition, an increasing RIPK3 methylation rate was observed with increasing tumor stage of melanomas. For further epigenetic characterization of RIPK3, epigenetic modulation was performed using a modified CRISPR/dCas9 (CRISPRa activation) system targeting its DNA hypermethylation. We observed a reduced fitness of melanoma cells by (re-)expression and demethylation of the RIPK3 gene using the epigenetic editing-based method. The tumor suppressive function of RIPK3 was evident by phenotypic determination using fluorescence microscopy, flow cytometry and wound healing assay. Our data highlight the function of RIPK3 as an epigenetically regulated tumor suppressor in melanoma, allowing it to be classified as a biomarker.


Assuntos
Biomarcadores Tumorais , Melanoma , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Metilação de DNA/genética , Epigênese Genética , Genes Supressores de Tumor , Melanoma/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Biomarcadores Tumorais/genética
7.
Prostate ; 72(14): 1550-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22415519

RESUMO

BACKGROUND: Ras association domain family (RASSF) comprises several tumor suppressor genes, which are often epigenetically inactivated in human tumors. Here, we aim to analyze the relevance of the recently identified member RASSF10 in prostate carcinogenesis. METHODS: RASSF10 promoter methylation and mRNA expression were investigated by bisulfite-pyrosequencing and qRT-PCR, respectively, in prostate carcinoma (PCa) cell lines (LNCaP, 22Rv1, DU-145) and in 83 primary PCa and 53 primary benign prostatic hyperplasia (BPH) tissues obtained after radical prostatectomy. Histological localization of RASSF10 was done by in situ hybridization. To prove the epigenetic nature of RASSF10 down regulation, PCa cell lines were treated with 5-aza-2-deoxycytidine and trichostatin A. Potential function of RASSF10 was analyzed in LNCaP by colony formation and apoptosis assays. RESULTS: RASSF10 mRNA was localized to cells of the basal layer of the prostatic gland. Absence (LNCaP) and decrease (22Rv1, DU-145) of RASSF10 expression was associated with promoter methylation and could be restored by demethylating agents. A link between RASSF10 mRNA reduction and promoter methylation was also detected in primary prostate tissues (P = 0.006), where PCa showed more frequently reduced RASSF10 levels when compared with BPH (33.7% vs. 13.2%, P = 0.009). RASSF10 methylation could be further associated with advanced tumor stage and advanced age (P-values < 0.05). Our preliminary functional assays revealed the ability of RASSF10 to inhibit colony formation (P = 0.018) and to increase apoptosis (P = 0.035). CONCLUSIONS: This is the first study, which demonstrates the frequent epigenetic inactivation of RASSF10 in PCa and its implication in clinical symptoms of PCa.


Assuntos
Neoplasias da Próstata/genética , Proteínas Supressoras de Tumor/genética , Idoso , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação para Baixo , Epigenômica/métodos , Citometria de Fluxo , Humanos , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Hiperplasia Prostática/genética , RNA Neoplásico/química , RNA Neoplásico/genética , Curva ROC , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Estatísticas não Paramétricas
8.
J Am Acad Dermatol ; 67(2): 215-25, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22050913

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) is a rare, highly malignant neuroendocrine tumor of the skin characterized by frequent lymphatic metastasis. OBJECTIVE: We sought to identify lymphovascular anatomy and expression profiles of lymphangiogenic cytokines to give an opinion on lymphangiogenesis in MCC. METHODS: We studied lymphatic microanatomy and lymphangiogenic cytokines in 27 MCC by immunohistology or immunofluorescence (D2-40, lymphatic vessel endothelial hyaluronan receptor [LYVE-1], vascular endothelial growth factor [VEGF] receptor-3, VEGF-C, VEGF-D, Ki67/MiB-1, CD68/PG-M1, CD68/KP1, CD163), Merkel cell polyomavirus-specific polymerase chain reaction, and coanalysis with clinical and histologic data. RESULTS: We found a more than 3-fold increase in the mean density of absolute numbers of small lymphatic capillaries (diameter <10 µm) and a more than 8-fold increase in the median ratio of the number of small to large lymphatics (<10/≥10 µm) paratumorally compared with intraindividual controls. VEGF-C(+)CD68(+) CD163(+) cells (interpreted as M2 macrophages) could be identified as an important potentially lymphangiogenesis-inducing cell type. LIMITATIONS: Partially lacking follow-up data limited the analysis of the prognostic impact. CONCLUSIONS: Our findings strongly indicate lymphangiogenesis in MCC driven by VEGF-C(+)CD68(+) CD163(+) M2 macrophages.


Assuntos
Carcinoma de Célula de Merkel/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Neoplasias Cutâneas/patologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Carcinoma de Célula de Merkel/metabolismo , Feminino , Humanos , Antígeno Ki-67/metabolismo , Vasos Linfáticos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo , Neoplasias Cutâneas/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Cancer Gene Ther ; 29(12): 1975-1987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35902728

RESUMO

Silencing of the Apoptosis associated Tyrosine Kinase gene (AATK) has been described in cancer. In our study, we specifically investigated the epigenetic inactivation of AATK in pancreatic adenocarcinoma, lower grade glioma, lung, breast, head, and neck cancer. The resulting loss of AATK correlates with impaired patient survival. Inhibition of DNA methyltransferases (DNMTs) reactivated AATK in glioblastoma and pancreatic cancer. In contrast, epigenetic targeting via the CRISPR/dCas9 system with either EZH2 or DNMT3A inhibited the expression of AATK. Via large-scale kinomic profiling and kinase assays, we demonstrate that AATK acts a Ser/Thr kinase that phosphorylates TP53 at Ser366. Furthermore, whole transcriptome analyses and mass spectrometry associate AATK expression with the GO term 'regulation of cell proliferation'. The kinase activity of AATK in comparison to the kinase-dead mutant mediates a decreased expression of the key cell cycle regulators Cyclin D1 and WEE1. Moreover, growth suppression through AATK relies on its kinase activity. In conclusion, the Ser/Thr kinase AATK represses growth and phosphorylates TP53. Furthermore, expression of AATK was correlated with a better patient survival for different cancer entities. This data suggests that AATK acts as an epigenetically inactivated tumor suppressor gene.


Assuntos
Adenocarcinoma , Proteínas Reguladoras de Apoptose , Neoplasias Pancreáticas , Proteínas Tirosina Quinases , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Pancreáticas
10.
Cancers (Basel) ; 13(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430083

RESUMO

Transcription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated. Here, we used stably transduced lung adenocarcinoma cell lines (A549 and A427) to overexpress or knockdown IRF9. Overexpression led to increased oncogenic behavior in vitro, including enhanced proliferation and migration, whereas knockdown reduced these effects. These findings were confirmed in vivo using lung tumor xenografts in nude mice, and effects on both tumor growth and tumor mass were observed. Using RNA sequencing, we identified versican (VCAN) as a novel downstream target of IRF9. Indeed, IRF9 and VCAN expression levels were found to be correlated. We showed for the first time that IRF9 binds at a newly identified response element in the promoter region of VCAN to regulate its transcription. Using an siRNA approach, VCAN was found to enable the oncogenic properties (proliferation and migration) of IRF9 transduced cells, perhaps with CDKN1A involvement. The targeted inhibition of IRF9 in lung cancer could therefore be used as a new treatment option without multimodal interference in microenvironment JAK-STAT signaling.

11.
Biochim Biophys Acta ; 1796(2): 114-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19344752

RESUMO

The Ras-Association Domain Family (RASSF) comprises ten members, termed RASSF1 to RASSF10. RASSF1 to RASSF6 harbor a C-terminal Ras-association (RA) domain and RASSF7 to RASSF10 contain an N-terminal RA domain. Interestingly, it was observed that in various tumor types distinct RASSFs transcripts (e.g. RASSF1A and RASSF2A) are missing due to hypermethylation of their CpG island promoter. Since methylation of the RASSF1A promoter is described as an early and frequent event in tumorigenesis, RASSF1A could serve as a useful diagnostic marker in cancer screens. RASSFs are implicated in various cellular mechanisms including apoptosis, cell cycle control and microtubule stabilization, though little is known about the underlying mechanisms. Tumor suppressing functions were reported for several members. Here we review the current literature on RASSF members focusing on structural, functional and epigenetic aspects. Characterizing the cellular mechanisms that regulate the signaling pathways RASSFs are involved in, could lead to a deeper understanding of tumor development and, furthermore, to new strategies in cancer treatment.


Assuntos
Epigênese Genética , Proteínas Supressoras de Tumor/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Ciclo Celular , Inativação Gênica , Genes ras , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
12.
Mol Cancer ; 9: 264, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20920251

RESUMO

BACKGROUND: The Ras association domain family (RASSF) encodes for distinct tumor suppressors and several members are frequently silenced in human cancer. In our study, we analyzed the role of RASSF2, RASSF3, RASSF4, RASSF5A, RASSF5C and RASSF6 and the effectors MST1, MST2 and WW45 in thyroid carcinogenesis. RESULTS: Frequent methylation of the RASSF2 and RASSF5A CpG island promoters in thyroid tumors was observed. RASSF2 was methylated in 88% of thyroid cancer cell lines and in 63% of primary thyroid carcinomas. RASSF2 methylation was significantly increased in primary thyroid carcinoma compared to normal thyroid, goiter and follicular adenoma (0%, 17% and 0%, respectively; p < 0.05). Patients which were older than 60 years were significantly hypermethylated for RASSF2 in their primary thyroid tumors compared to those younger than 40 years (90% vs. 38%; p < 0.05). RASSF2 promoter hypermethylation correlated with its reduced expression and treatment with a DNA methylation inhibitor reactivated RASSF2 transcription. Over-expression of RASSF2 reduced colony formation of thyroid cancer cells. Functionally our data show that RASSF2 interacts with the proapoptotic kinases MST1 and MST2 and induces apoptosis in thyroid cancer cell lines. Deletion of the MST interaction domain of RASSF2 reduced apoptosis significantly (p < 0.05). CONCLUSION: These results suggest that RASSF2 encodes a novel epigenetically inactivated candidate tumor suppressor gene in thyroid carcinogenesis.


Assuntos
Neoplasias da Glândula Tireoide/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA/genética , Metilação de DNA/fisiologia , Feminino , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Neoplasias da Glândula Tireoide/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Mol Cancer ; 9: 51, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20205715

RESUMO

BACKGROUND: There are several high throughput approaches to identify methylated genes in cancer. We utilized one such recently developed approach, MIRA (methylated-CpG island recovery assay) combined with CpG island arrays to identify novel genes that are epigenetically inactivated in breast cancer. RESULTS: Using this approach we identified numerous CpG islands that demonstrated aberrant DNA methylation in breast cancer cell lines. Using a combination of COBRA and sequencing of bisulphite modified DNA, we confirmed 5 novel genes frequently methylated in breast tumours; EMILIN2, SALL1, DBC1, FBLN2 and CIDE-A. Methylation frequencies ranged from between 25% and 63% in primary breast tumours, whilst matched normal breast tissue DNA was either unmethylated or demonstrated a much lower frequency of methylation compared to malignant breast tissue DNA. Furthermore expression of the above 5 genes was shown to be restored following treatment with a demethylating agent in methylated breast cancer cell lines. We have expanded this analysis across three other common epithelial cancers (lung, colorectal, prostate). We demonstrate that the above genes show varying levels of methylation in these cancers. Lastly and most importantly methylation of EMILIN2 was associated with poorer clinical outcome in breast cancer and was strongly associated with estrogen receptor as well as progesterone receptor positive breast cancers. CONCLUSION: The combination of the MIRA assay with CpG island arrays is a very useful technique for identifying epigenetically inactivated genes in cancer genomes and can provide molecular markers for early cancer diagnosis, prognosis and epigenetic therapy.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA/genética , Epitélio/patologia , Genes Neoplásicos/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Epitélio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida
14.
Curr Biol ; 17(8): 700-5, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17379520

RESUMO

The Ras Association Domain Family 1A (RASSF1A) gene is one of the most frequently silenced genes in human cancer. RASSF1A has been shown to interact with the proapoptotic kinase MST1. Recent work in Drosophila has led to the discovery of a new tumor-suppressor pathway involving the Drosophila MST1 and MST2 ortholog, Hippo, as well as the Lats/Warts serine/threonine kinase and a protein named Salvador (Sav). Little is known about this pathway in mammalian cells. We report that complexes consisting of RASSF1A, MST2, WW45 (the human ortholog of Sav), and LATS1 exist in human cells. MST2 enhances the RASSF1A-WW45 interaction, which requires the C-terminal SARAH domain of both proteins. Components of this complex are localized at centrosomes and spindle poles from interphase to telophase and at the midbody during cytokinesis. Both RASSF1A and WW45 activate MST2 by promoting MST2 autophosphorylation and LATS1 phosphorylation. Mitosis is delayed in Rassf1a(-/-) mouse embryo fibroblasts and frequently results in cytokinesis failure, similar to what has been observed for LATS1-deficient cells. RASSF1A, MST2, or WW45 can rescue this defect. The complex of RASSF1A, MST2, WW45, and LATS1 consists of several tumor suppressors, is conserved in mammalian cells, and appears to be involved in controlling mitotic exit.


Assuntos
Proteínas Supressoras de Tumor/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Centrossomo , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Fuso Acromático/química , Transfecção , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/genética
15.
Oncogene ; 39(15): 3114-3127, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32047266

RESUMO

Kidney cancer incidences are rising globally, thereby fueling the demand for targeted therapies and precision medicine. In our previous work, we have identified and characterized the Ras-Association Domain Family encoding ten members that are often aberrantly expressed in human cancers. In this study, we created and analyzed the Rassf10 knockout mice. Here we show that Rassf10 haploinsufficiency promotes neoplasia formation in two established mouse cancer models (Rassf1A-/- and p53-/-). Haploinsufficient Rassf10 knockout mice were significantly prone to various diseases including lymphoma (Rassf1A-/- background) and thymoma (p53-/- background). Especially Rassf10-/- and p53-deficient mice exhibited threefold increased rates of kidney cysts compared with p53-/- controls. Moreover, we observed that in human kidney cancer, RASSF10 is frequently epigenetically inactivated by its CpG island promoter hypermethylation. Primary tumors of renal clear cell and papillary cell carcinoma confirmed that RASSF10 methylation is associated with decreased expression in comparison to normal kidney tissue. In independent data sets, we could validate that RASSF10 inactivation clinically correlated with decreased survival and with progressed disease state of kidney cancer patients and polycystic kidney size. Functionally, we revealed that the loss of Rassf10 was significantly associated with upregulation of KRAS signaling and MYC expression. In summary, we could show that Rassf10 functions as a haploinsufficient tumor suppressor. In combination with other markers, RASSF10 silencing can serve as diagnostic and prognostic cancer biomarker in kidney diseases.


Assuntos
Biomarcadores Tumorais/genética , Inativação Gênica , Neoplasias Renais/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Haploinsuficiência , Humanos , Estimativa de Kaplan-Meier , Rim/patologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Knockout , Prognóstico , Regiões Promotoras Genéticas/genética , Regulação para Cima
16.
Cancer Res ; 80(19): 4199-4211, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816854

RESUMO

Although NF-κB is known to play a pivotal role in lung cancer, contributing to tumor growth, microenvironmental changes, and metastasis, the epigenetic regulation of NF-κB in tumor context is largely unknown. Here we report that the IKK2/NF-κB signaling pathway modulates metastasis-associated protein 2 (MTA2), a component of the nucleosome remodeling and deacetylase complex (NuRD). In triple transgenic mice, downregulation of IKK2 (Sftpc-cRaf-IKK2DN) in cRaf-induced tumors in alveolar epithelial type II cells restricted tumor formation, whereas activation of IKK2 (Sftpc-cRaf-IKK2CA) supported tumor growth; both effects were accompanied by altered expression of MTA2. Further studies employing genetic inhibition of MTA2 suggested that in primary tumor growth, independent of IKK2, MTA2/NuRD corepressor complex negatively regulates NF-κB signaling and tumor growth, whereas later dissociation of MTA2/NuRD complex from the promoter of NF-κB target genes and IKK2-dependent positive regulation of MTA2 leads to activation of NF-κB signaling, epithelial-mesenchymal transition, and lung tumor metastasis. These findings reveal a previously unrecognized biphasic role of MTA2 in IKK2/NF-κB-driven primary-to-metastatic lung tumor progression. Addressing the interaction between MTA2 and NF-κB would provide potential targets for intervention of tumor growth and metastasis. SIGNIFICANCE: These findings strongly suggest a prominent role of MTA2 in primary tumor growth, lung metastasis, and NF-κB signaling modulatory functions.


Assuntos
Histona Desacetilases/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histona Desacetilases/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , Proteínas Repressoras/genética , Transdução de Sinais , Transativadores/genética , Microambiente Tumoral
17.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256112

RESUMO

Iroquois homeobox (IRX) encodes members of homeodomain containing genes which are involved in development and differentiation. Since it has been reported that the IRX1 gene is localized in a lung cancer susceptibility locus, the epigenetic regulation and function of IRX1 was investigated in lung carcinogenesis. We observed frequent hypermethylation of the IRX1 promoter in non-small cell lung cancer (NSCLC) compared to small cell lung cancer (SCLC). Aberrant IRX1 methylation was significantly correlated with reduced IRX1 expression. In normal lung samples, the IRX1 promoter showed lower median DNA methylation levels (<10%) compared to primary adenocarcinoma (ADC, 22%) and squamous cell carcinoma (SQCC, 14%). A significant hypermethylation and downregulation of IRX1 was detected in ADC and SQCC compared to matching normal lung samples (p < 0.0001). Low IRX1 expression was significantly correlated with impaired prognosis of ADC patients (p = 0.001). Reduced survival probability was also associated with higher IRX1 promoter methylation (p = 0.02). Inhibition of DNA methyltransferase (DNMT) activity reactivated IRX1 expression in human lung cancer cell lines. Induced DNMT3A and EZH2 expression was correlated with downregulation of IRX1. On the cellular level, IRX1 exhibits nuclear localization and expression of IRX1 induced fragmented nuclei in cancer cells. Localization of IRX1 and induction of aberrant nuclei were dependent on the presence of the homeobox of IRX1. By data mining, we showed that IRX1 is negatively correlated with oncogenic pathways and IRX1 expression induces the proapoptotic regulator BAX. In conclusion, we report that IRX1 expression is significantly associated with improved survival probability of ADC patients. IRX1 hypermethylation may serve as molecular biomarker for ADC diagnosis and prognosis. Our data suggest that IRX1 acts as an epigenetically regulated tumor suppressor in the pathogenesis of lung cancer.

18.
Mol Carcinog ; 48(10): 903-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19326371

RESUMO

Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. It has recently been reported that integration of a Merkel cell polyomavirus (MCPyV) in receptor tyrosine phosphates type G (PTPRG) gene occurs in MCC, and that viral infections are associated with epigenetic silencing of tumor suppressor genes (TSG) in cancer. To examine whether a correlation between TSG inactivation and viral infection can be found in MCC, we investigated the promoter hypermethylation of RASSF1A, TP73, PTPRG, FHIT, and CDKN2A and the presence of MCPyV and SV40 in 98 MCC by PCR. Hypermethylation of RASSF1A was frequently found in 42 of 83 (51%) of MCC. Methylation of CDKN2A was present in 9 of 41 (22%) of MCC. Hypermethylation of TP73 (0%), PTPRG (4%), and FHIT (0%) was infrequent in MCC. Interestingly, MCPyV was found in 90 of 98 (92%) MCC, however, no SV40 signal was detected. No correlation between TSG hypermethylation and viral infection was found. Our results show frequent hypermethylation of RASSF1A and the presence of MCPyV in primary MCC, and that these events may contribute to the pathogenesis of MCC.


Assuntos
Carcinoma de Célula de Merkel/genética , Metilação de DNA/genética , Infecções por Polyomavirus/genética , Polyomavirus/isolamento & purificação , Regiões Promotoras Genéticas/genética , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/genética , Hidrolases Anidrido Ácido/genética , Carcinoma de Célula de Merkel/virologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Infecções por Polyomavirus/virologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Estudos Retrospectivos , Vírus 40 dos Símios/genética , Neoplasias Cutâneas/virologia , Proteína Tumoral p73
19.
J Transl Med ; 7: 90, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19857250

RESUMO

BACKGROUND: The ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) gene involved in the regulation of cellular ubiquitin levels plays an important role in different cellular processes including cell growth and differentiation. Aberrant expression of UCHL1 has been found in a number of human solid tumors including renal cell carcinoma (RCC). In RCC, UCHL1 overexpression is associated with tumor progression and an altered von Hippel Lindau gene expression. METHODS: To determine the underlying mechanisms for the heterogeneous UCHL1 expression pattern in RCC the UCHL1 promoter DNA methylation status was determined in 17 RCC cell lines as well as in 32 RCC lesions and corresponding tumor adjacent kidney epithelium using combined bisulfite restriction analysis as well as bisulfite DNA sequencing. RESULTS: UCHL1 expression was found in all 32 tumor adjacent kidney epithelium samples. However, the lack of or reduced UCHL1 mRNA and/or protein expression was detected in 13/32 RCC biopsies and 7/17 RCC cell lines and due to either a total or partial methylation of the UCHL1 promoter DNA. Upon 2'-deoxy-5-azacytidine treatment an induction of UCHL1 mRNA and protein expression was found in 9/17 RCC cell lines, which was linked to the demethylation degree of the UCHL1 promoter DNA. CONCLUSION: Promoter hypermethylation represents a mechanism for the silencing of the UCHL1 gene expression in RCC and supports the concept of an epigenetic control for the expression of UCHL1 during disease progression.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais , Epigênese Genética , Neoplasias Renais , Ubiquitina Tiolesterase/genética , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ubiquitina Tiolesterase/metabolismo
20.
Cancers (Basel) ; 11(12)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817988

RESUMO

The Ras Association Domain Family (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10. Additionally, we analyzed the up- and downstream pathways of RASSF10 that are involved in its tumor suppressive function. We report that RASSF10 binds ASPP1 (Apoptosis-stimulating protein of p53) and ASPP2 through its coiled-coils. Induction of RASSF10 leads to increased protein levels of ASPP2 and acts negatively on cell cycle progression. Interestingly, we found that RASSF10 is a target of the EMT (epithelial mesenchymal transition) driver TGFß (Transforming growth factor beta) and that negatively associated genes of RASSF10 are significantly over-represented in an EMT gene set collection. We observed a positive correlation of RASSF10 expression and E-cadherin that prevents EMT. Depletion of RASSF10 by CRISPR/Cas9 technology induces the ability of lung cancer cells to proliferate and to invade an extracellular matrix after TGFß treatment. Additionally, knockdown of RASSF10 or ASPP2 induced constitutive phosphorylation of SMAD2 (Smad family member 2). Moreover, we found that epigenetic reduction of RASSF10 levels correlates with tumor progression and poor survival in human cancers. Our study indicates that RASSF10 acts a TGFß target gene and negatively regulates cell growth and invasion through ASPP2. This data suggests that epigenetic loss of RASSF10 contributes to tumorigenesis by promoting EMT induced by TGFß.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA