Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518972

RESUMO

The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated.


Assuntos
Proteína ADAMTS5/genética , Diferenciação Celular , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteína ADAMTS5/metabolismo , Animais , Embrião não Mamífero , Espaço Extracelular , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas Hedgehog/metabolismo , Morfogênese/genética , Desenvolvimento Muscular/genética , Transdução de Sinais
2.
Biochem J ; 473(14): 2011-22, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27407170

RESUMO

The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.


Assuntos
Proteínas ADAMTS/metabolismo , Proteínas ADAMTS/química , Proteínas ADAMTS/classificação , Animais , Evolução Biológica , Humanos , Modelos Biológicos , Filogenia , Conformação Proteica
3.
BMC Evol Biol ; 15: 22, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25879701

RESUMO

BACKGROUND: The A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motifs (ADAMTS) enzymes comprise 19 mammalian zinc-dependent metalloproteinases (metzincins) with homologues in a wide range of invertebrates. ADAMTS enzymes have a broad range of functions in development and diseases due to their extracellular matrix remodelling activity. Here, we report a detailed characterisation of their evolutionary conservation across vertebrates. RESULTS: Using bioinformatics complemented with de novo sequencing, gene sequences for ADAMTS enzymes were obtained from a variety of organisms. Detailed evolutionary analyses revealed a high level of conservation across vertebrates with evidence of ADAMTS gene expansion during two rounds of whole genome duplication (WGD) in vertebrates, while tandem duplication events and gene loss were also apparent. However, the additional round of teleost-specific WGD did not have a significant effect on ADAMTS gene family members suggesting their conserved roles have remained constant in teleost fish. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed dynamic expression of adamts genes throughout zebrafish embryonic development reflecting the key conserved roles they play in vertebrate embryogenesis. Notably, several adamts mRNAs were maternally expressed with a dramatic increase in mRNA levels coinciding with zygotic expression and organogenesis. Broad adamts mRNA expression was also demonstrated in several adult organs indicating potential roles in adult homeostasis. CONCLUSIONS: Our data highlight the evolution of the ADAMTS gene family through duplication processes across metazoans supplemented by a burst of amplification through vertebrate WGD events. It also strongly posits the zebrafish as a potential model species to further elucidate the function of ADAMTS enzymes during vertebrate development.


Assuntos
Evolução Molecular , Metaloendopeptidases/química , Metaloendopeptidases/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Proteínas ADAM/química , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animais , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Metaloendopeptidases/metabolismo , Filogenia , Estrutura Terciária de Proteína , Vertebrados/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
4.
J Biol Chem ; 288(52): 37267-76, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24220035

RESUMO

The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR(212)↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position (441)E↓A(442). In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican.


Assuntos
Proteínas ADAM/biossíntese , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Precursores Enzimáticos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Versicanas/metabolismo , Proteínas ADAM/genética , Animais , Células COS , Chlorocebus aethiops , Precursores Enzimáticos/genética , Furina/genética , Furina/metabolismo , Células HEK293 , Humanos , Camundongos Knockout , Especificidade de Órgãos/fisiologia , Coelhos , Versicanas/genética
5.
Cell Rep ; 23(2): 485-498, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642006

RESUMO

Focal adhesions anchor cells to extracellular matrix (ECM) and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC) focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM.


Assuntos
Proteína ADAMTS9/metabolismo , Adesões Focais/metabolismo , Proteína ADAMTS9/antagonistas & inibidores , Proteína ADAMTS9/genética , Actinas/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Miométrio/patologia , Gravidez , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Útero/citologia , Versicanas/metabolismo
6.
Arthritis Res Ther ; 16(5): 429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25606593

RESUMO

Arthritis is a multifactorial disease for which current therapeutic intervention with high efficacy remains challenging. Arthritis predominately affects articular joints, and cartilage deterioration and inflammation are key characteristics. Current therapeutics targeting inflammatory responses often cause severe side effects in patients because of the systemic inhibition of cytokines or other global immunosuppressive activities. Furthermore, a lack of primary response or failure to sustain a response to treatment through acquired drug resistance is an ongoing concern. Nevertheless, treatments such as disease-modifying anti-rheumatic drugs, biological agents, and corticosteroids have revealed promising outcomes by decreasing pain and inflammation in patients and in some cases reducing radiographic progression of the disease. Emerging and anecdotal therapeutics with anti-inflammatory activity, alongside specific inhibitors of the A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 repeats (ADAMTS) cartilage-degrading aggrecanases, provide promising additions to current arthritis treatment strategies. Thus, it is paramount that treatment strategies be optimized to increase efficacy, reduce debilitating side effects, and improve the quality of life of patients with arthritis. Here, we review the current strategies that attempt to slow or halt the progression of osteoarthritis and rheumatoid arthritis, providing an up-to-date summary of pharmaceutical treatment strategies and side effects. Importantly, we highlight their potential to indirectly regulate ADAMTS aggrecanase activity through their targeting of inflammatory mediators, thus providing insight into a mechanism by which they might inhibit cartilage destruction to slow or halt radiographic progression of the disease. We also contrast these with anecdotal or experimental administration of statins that could equally regulate ADAMTS aggrecanase activity and are available to arthritis sufferers worldwide. Finally, we review the current literature regarding the development of synthetic inhibitors directed toward the aggrecanases ADAMTS4 and ADAMTS5, a strategy that might directly inhibit cartilage destruction and restore joint function in both rheumatoid arthritis and osteoarthritis.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Artrite Reumatoide/tratamento farmacológico , Cartilagem/efeitos dos fármacos , Inflamação/prevenção & controle , Osteoartrite/tratamento farmacológico , Pró-Colágeno N-Endopeptidase/antagonistas & inibidores , Proteínas ADAM/metabolismo , Proteína ADAMTS4 , Antirreumáticos/uso terapêutico , Cartilagem/enzimologia , Cartilagem/patologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Pró-Colágeno N-Endopeptidase/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA