Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851578

RESUMO

Few studies have examined the N kinetics of individual feeds with stable isotope tracing. We hypothesized that N partitioning to milk and excreta pools as well as the rates of the processes that drive this partitioning would differ for alfalfa silage, corn silage, corn grain, and soybean meal. Feed ingredients were endogenously labeled with 15N and included in 4 diets to create treatments with the same dietary composition and different labeled feed. Diets were fed to 12 late-lactation dairy cows for 4 d (96 h) and feces, urine, and milk collection proceeded during the 4 d of 15N enrichment and for 3 d (80 h) after cessation of label feeding. Nonlinear models of 15N enrichment and decay were fit to milk (MN), urine (UN), and fecal N (FN) in R with the nlme package and feed-specific parameter estimates were compared. The estimated proportions of feed N that were excreted in feces supported our understanding that N from soybean meal and corn grain is more digestible than N from alfalfa and corn silage. Estimates for the N partitioning between milk (MN) and urine (UN) from the 2 concentrate feeds (soybean meal and corn grain) indicated that UN:MN ratios were less than or equal to 1:1 indicating either more or equal nitrogen partitioning to milk compared with urine. It is important to maintain factual accuracy in representing the results rather than implying a desired outcome unsupported by the data. In contrast, UN:MN ratios for forage feeds (corn and alfalfa silage) were > 1:1, indicating more N partitioning to urine than milk. The modeled proportion of total FN that originated from feed N was 82.2% which is in line with previous research using a similar 15N measurement timeframe. However, the proportion of urinary and MN originating from feed N was much lower (60.5% for urine, 57.9% for milk), suggesting that approximately 40% of urinary and MN directly originate from body N sources related to protein turnover.

2.
J Dairy Sci ; 104(5): 5467-5478, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33685687

RESUMO

Cows experience a significant negative protein balance during the first 30 d of lactation. Given the functional effects of AA on health, especially in challenging periods such as calving, higher levels of protein and specific AA in the diet may act to improve health and feed intake. The response of dairy cows to 3 protein supplementation strategies during the transition period and through the first 45 d in milk was evaluated. The final data set had 39 Holstein cows blocked based on parity (primiparous vs. multiparous) and expected calving and randomly assigned within each block to one of 3 dietary treatments: low protein (LP), high protein (HP), or high protein plus rumen-protected methionine (HPM). Treatments were offered from d -18 ± 5 to 45 d relative to parturition. Pre- and postpartum diets were formulated for high metabolizable protein (MP) supply from soybean meal, and HP and HPM provided higher MP balance than LP. Preplanned contrasts were LP versus HP+HPM and HP versus HPM. Significance was declared at P ≤ 0.05 and trends at 0.05


Assuntos
Metionina , Proteínas do Leite , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Lactação , Leite , Período Pós-Parto , Gravidez , Rúmen
3.
Animals (Basel) ; 13(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37889775

RESUMO

To evaluate the effects of amount and profile of amino acid (AA) on milk protein yield (MPY), mammary metabolism, and efficiency of nitrogen use (ENU), ten cows were used in 5 × 5 replicated Latin squares and fed a positive control (16.1% crude protein-CP) or two lower CP diets (14.6 and 13.2%) with or without essential AA (EAA) infusion. The EAA solutions provided predicted limiting EAA in each treatment and were continuously infused into the abomasum of the cows. Milk production and MPY were not affected by treatment (mean 35.4 kg/d and 1.03 kg/d, respectively). Efficiency of nitrogen utilization was increased as dietary CP decreased but was not affected by EAA infusion (p < 0.01). Energy-corrected milk production was increased by EAA infusion into 13.2% CP, but not into 14.6% CP diet (p = 0.09), reaching the positive control value. Infusions increased mammary affinity for non-infused EAA (Ile, Phe, Thr, and Trp), allowing the same MPY despite lower arterial concentrations of these AA. Higher arterial concentrations of infused EAA did not increase their mammary uptake and MPY (p = 0.40; p = 0.85). Mammary metabolism did not fully explain changes in N efficiency, suggesting that it might be driven by less extramammary catabolism as AA supply was reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA