Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Inorg Chem ; 63(10): 4716-4724, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38417153

RESUMO

Structures are of fundamental importance for diverse studies of lithium polysulfide clusters, which govern the performance of lithium-sulfur batteries. The ring-like geometries were regarded as the most stable structures, but their physical origin remains elusive. In this work, we systematically explored the minimal structures of Li2Sx (x = 4-8) clusters to uncover the driving force for their conformational preferences. All low-lying isomers were generated by performing global searches using the ABCluster program, and the ionic nature of the Li···S interactions was evidenced with the energy decomposition analysis based on the block-localized wave function (BLW-ED) approach and further confirmed with the quantum theory of atoms in molecule (QTAIM). By analysis of the contributions of various energy components to the relative stability with the references of the lowest-lying isomers, the controlling factor for isomer preferences was found to be the polarization interaction. Notably, although the electrostatic interaction dominates the binding energies, it contributes favorably to the relative stabilities of most isomers. The Li+···Li+ distance is identified as the key geometrical parameter that correlates with the strength of the polarization of the Sx2- fragment imposed by the Li+ cations. Further BLW-ED analyses reveal that the cooperativity of the Li+ cations primarily determines the relative strength of the polarization.

2.
Angew Chem Int Ed Engl ; : e202407838, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860437

RESUMO

The inherent chiral structures of DNA serve as attractive scaffolds to construct DNA hybrid catalysts for valuable enantioselective transformations. Duplex and G-quadruplex DNA-based enantioselective catalysis has made great progress, yet novel design strategies of DNA hybrid catalysts are highly demanding and atomistic analysis of active centers is still challenging. DNA i-motif structures could be finely tuned by different cytosine-cytosine base pairs, providing a new platform to design DNA catalysts. Herein, we found that a human telomeric i-motif DNA containing cytosine-silver(I)-cytosine (C-Ag+-C) base pairs interacting with Cu(II) ions (i-motif DNA(Ag+)/Cu2+) could catalyze Diels-Alder reactions with full conversions and up to 95 % enantiomeric excess. As characterized by various physicochemical techniques, the presence of Ag+ is proved to replace the protons in hemiprotonated cytosine-cytosine (C : C+) base pairs and stabilize the DNA i-motif to allow the acceptance of Cu(II) ions. The i-motif DNA(Ag+)/Cu2+ catalyst shows about 8-fold rate acceleration compared with DNA and Cu2+. Based on DNA mutation experiments, thermodynamic studies and density function theory calculations, the catalytic center of Cu(II) ion is proposed to be located in a specific loop region via binding to one nitrogen-7 atom of an unpaired adenine and two phosphate-oxygen atoms from nearby deoxythymidine monophosphate and deoxyadenosine monophosphate, respectively.

3.
J Comput Chem ; 44(3): 138-148, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35147229

RESUMO

Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5-8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl- , Br- and I- ), and remarkable binding strengths up to -294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.

4.
Chemistry ; 29(38): e202300464, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096756

RESUMO

Helical structure in catalysts has attracted attention and been recently investigated for various catalytic reactions. However, helical transition metal oxides suffer from uncontrollable crystallization processes at high temperatures when being transformed from an amorphous phase into a crystalline structure. Herein, we report a helical anatase TiO2 nanotube for the first time, which has been prepared using a protected crystallization strategy in the confined space of silica. A single chirality of helical TiO2 has been used to track the ordering of the twisted structure. The twisted structure in helical anatase TiO2 nanotube is maintained after a vigorous crystallization process. Helical anatase TiO2 nanotubes possess more accessible active sites and abundant defects of oxygen vacancy and Ti3+ species owing to the twisted structure. The obtained helical anatase TiO2 nanotube exhibits superior photocatalytic activity for hydrogen production without adding any co-catalysts. This work provides new insights into the role of helical structure in transition metal-based catalysts.


Assuntos
Nanotubos , Titânio , Cristalização , Titânio/química , Nanotubos/química , Temperatura Alta
5.
Chemistry ; 27(56): 14042-14050, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319620

RESUMO

Recent years have witnessed various fascinating phenomena arising from the interactions of noncovalent bonds with homogeneous external electric fields (EEFs). Here we performed a computational study to interpret the sensitivity of intrinsic bond strengths to EEFs in terms of steric effect and orbital interactions. The block-localized wavefunction (BLW) method, which combines the advantages of both ab initio valence bond (VB) theory and molecular orbital (MO) theory, and the subsequent energy decomposition (BLW-ED) approach were adopted. The sensitivity was monitored and analyzed using the induced energy term, which is the variation in each energy component along the EEF strength. Systems with single or multiple hydrogen (H) or halogen (X) bond(s) were also examined. It was found that the X-bond strength change to EEFs mainly stems from the covalency change, while generally the steric effect rules the response of H-bonds to EEFs. Furthermore, X-bonds are more sensitive to EEFs, with the key difference between H- and X-bonds lying in the charge transfer interaction. Since phenylboronic acid has been experimentally used as a smart linker in EEFs, switchable sensitivity was scrutinized with the example of the phenylboronic acid dimer, which exhibits two conformations with either antiparallel or parallel H-bonds, thereby, opposite or consistent responses to EEFs. Among the studied systems, the quadruple X-bonds in molecular capsules exhibit remarkable sensitivity, with its interaction energy increased by -95.2 kJ mol-1 at the EEF strength 0.005 a.u.


Assuntos
Halogênios , Hidrogênio
6.
Phys Chem Chem Phys ; 23(3): 2469-2474, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33463647

RESUMO

In comparison with the prevalent 2D material-supported single atom catalysts (SACs), the design and fabrication of SACs with single molecule substrates are still challenging. Here we introduce a new type of SAC in which a recently identified all-boron fullerene B40 is employed as the support and its catalytic performance toward the nitrogen reduction reaction (NRR) process is explored in theory. Taking advantage of the novel heptagonal ring substructure on the sphere and the electron-deficient nature of boron, the atomic metals are facile to reside on B40 to form atomically dispersed η7-B40M exohedral complexes. Among a series of candidates, originating from the proper metal-adsorbate interactions, the atomic tungsten-decorated B40W is screened out as the most feasible catalyst for the NRR with a low over-potential and high selectivity to passivate the competitive hydrogen evolution process.

7.
Phys Chem Chem Phys ; 22(39): 22627-22634, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33015694

RESUMO

NO electrochemical reduction (NOER) is a promising route for the removal of pollutant NO and the production of ammonia. In this work, by means of first-principles computations, we designed a series of single atom catalysts consisting of atomic transition metals anchored onto defective hexagonal boron nitride (h-BN) with boron vacancies (TM@h-BN). Among all nine candidates, our results revealed that Cu@h-BN and Ni@h-BN showed excellent NOER performances with relatively low limiting potentials of 0.23 and 0.31 V, respectively, which are comparable to (or even better than) that of the benchmark Pt catalyst (0.25 V). Moreover, Cu@h-BN and Ni@h-BN can significantly inhibit the competitive hydrogen evolution reaction, suggesting that the promoted ammonia formation is a low-potential and highly selective process.

8.
Angew Chem Int Ed Engl ; 59(9): 3444-3449, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31825550

RESUMO

The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA-based ArMs containing duplex and G-quadruplex scaffolds have been widely investigated, yet RNA-based ArMs are scarce. Here we report that a cyclic dinucleotide of c-di-AMP and Cu2+ ions assemble into an artificial metalloribozyme (c-di-AMP⋅Cu2+ ) that enables catalysis of enantioselective Friedel-Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c-di-AMP⋅Cu2+ gives rise to a 20-fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c-di-AMP⋅Cu2+ metalloribozyme is suggested in which two c-di-AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine-adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom.


Assuntos
Reação de Cicloadição , Fosfatos de Dinucleosídeos/química , Água/química , Catálise , Cobre/química , Teoria da Densidade Funcional , Dimerização , Fosfatos de Dinucleosídeos/metabolismo , Quadruplex G , Cinética , Metaloproteínas/química , Metaloproteínas/metabolismo , Estereoisomerismo , Especificidade por Substrato
9.
Chemistry ; 25(2): 621-626, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30320475

RESUMO

Bimetallic sulfides with earth-abundant transition-metal elements are proposed to enhance the electrocatalytic activities. Further replacement of S atom by less electronegative P atom improves the electrocatalytic performance of OER and HER. Herein, hollow bimetallic zinc cobalt phosphosulfides (Zn0.3 Co2.7 S3 P) are synthesized by a two-step process. The optimal catalyst of Zn0.3 Co2.7 S3 P with particle size of 50 nm displays an excellent electroactivity and long-term durability toward efficient overall water splitting process in alkaline medium. The excellent bifunctional electrocatalytic performance may be ascribed to the synergistic effect of hollow structure, anion substitution tuning and unique size control.

10.
J Comput Chem ; 38(26): 2241-2247, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28718989

RESUMO

Although the existence of Stone-Wales (5-7) defect at graphene edge has been clarified experimentally, theoretical study on the formation mechanism is still imperfect. In particular, the regioselectivity of multistep reactions at edge (self-reconstruction and growth with foreign carbon feedstock) is essential to understand the kinetic behavior of reactive boundaries but investigations are still lacking. Herein, by using finite-sized models, multistep reconstructions and carbon dimer additions of a bared zigzag edge are introduced using density functional theory calculations. The zigzag to 5-7 transformation is proved as a site-selective process to generate alternating 5-7 pairs sequentially and the first step with largest barrier is suggested as the rate-determining step. Conversely, successive C2 insertions on the active edge are calculated to elucidate the formation of 5-7 edge during graphene growth. A metastable intermediate with a triple sequentially fused pentagon fragment is proved as the key structure for 5-7 edge formation. © 2017 Wiley Periodicals, Inc.

11.
Chemistry ; 23(8): 1789-1794, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27778399

RESUMO

Alkylated single-walled carbon nanotubes (SWNTs) have been thermally treated to determine the influence of substituents and the degree of functionalization on their thermal stability and photoluminescence (PL) properties. Alkylated SWNTs were prepared by treating SWNTs with sodium naphthalenide and alkyl bromide. The defunctionalization of the alkylated SWNTs was monitored by absorption and Raman spectra. Selective recovery of the characteristic absorption and radial breathing mode peaks was observed during the thermal treatment, which indicates that the thermal stability of the alkylated SWNTs decreases with increases in SWNT diameter and degree of functionalization. n-Butylated and phenethylated SWNTs showed higher thermal stability than sec-butylated and benzylated SWNTs for a similar degree of functionalization, respectively. The diameter selectivity and effect of substituents on the thermal elimination reaction were confirmed by density functional theory. In addition, it was shown that the initial degree of functionalization of the alkylated SWNTs, with the alkyl group and degree of functionalization being kept constant after thermal treatment, strongly affects their PL properties; Stokes shift, and PL peak intensity.

12.
Inorg Chem ; 56(12): 6890-6896, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28548829

RESUMO

We introduce monotitanium-based endohedral metallofullerenes (EMFs) using density functional theory calculations. Isomeric C64 fullerenes are initially employed as hosts, and Ti@C64 species show novel features on the electronic structures. Energetically, the preference of titanium residing on triple-fused-pentagon subunits is proposed in theory. More importantly, different from current knowledge on mono-EMFs, electron transfer between titanium and carbon cages is not unified but is essentially dependent on the pentagon distribution of the binding sites, giving rise to variations of the cationic titanium of Ti@C64. Such selective electron-transfer character is extended to the study of the encapsulation of other neighboring metal atoms (i.e., calcium and scandium). Because of their different capabilities to accept d electrons, fullerene cages with distinct fused-pentagon motifs show selective metal encapsulation characters. In addition, some other fullerenes (C44-C48 and C82) are selected as hosts to study the electron-transfer behavior of titanium in smaller fullerenes and larger systems without pentagon adjacency.

13.
Phys Chem Chem Phys ; 19(31): 20773-20777, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28740989

RESUMO

Binding of Li+ to quadrannulene and its influence on buckybowl functionalization are introduced. The concave-trapped Li+ acts as a Lewis acid and the rate of Diels-Alder cycloaddition is enhanced 108 times. A sandwiched bowl-Li+-bowl structure is stabilized via concave-cation-convex interactions, indicating the promoted role of Li+ in buckybowl assembly.

14.
J Am Chem Soc ; 138(50): 16523-16532, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998084

RESUMO

We compared the chemical reactivity of D2d(23)-C84 and that of Sc2C2@D2d(23)-C84, both having the same carbon cage geometry, in the photolysis of 2-adamantane-2,3'-[3H]-diazirine, to clarify metal-atom doping effects on the chemical reactivity of the carbon cage. Experimental and computational studies have revealed that the chemical reactivity of the D2d(23)-C84 carbon cage is altered drastically by endohedral Sc2C2 doping. The reaction of empty D2d(23)-C84 with the diazirine under photoirradiation yields two adamantylidene (Ad) adducts. NMR spectroscopic studies revealed that the major Ad monoadduct (C84(Ad)-A) has a fulleroid structure and that the minor Ad monoadduct (C84(Ad)-B) has a methanofullerene structure. The latter was also characterized using X-ray crystallography. C84(Ad)-A is stable under photoirradiation, but it interconverted to C84(Ad)-B by heating at 80 °C. In contrast, the reaction of endohedral Sc2C2@D2d(23)-C84 with diazirine under photoirradiation affords four Ad monoadducts (Sc2C2@C84(Ad)-A, Sc2C2@C84(Ad)-B, Sc2C2@C84(Ad)-C, and Sc2C2@C84(Ad)-D). The structure of Sc2C2@C84(Ad)-C was characterized using X-ray crystallography. Thermal interconversion of Sc2C2@C84(Ad)-A and Sc2C2@C84(Ad)-B to Sc2C2@C84(Ad)-C was also observed. The reaction mechanisms of the Ad addition and thermal interconversion were elucidated from theoretical calculations. Calculation results suggest that C84(Ad)-B and Sc2C2@C84(Ad)-C are thermodynamically favorable products. Their different chemical reactivities derive from Sc2C2 doping, which raises the HOMO and LUMO levels of the D2d(23)-C84 carbon cage.

15.
J Comput Chem ; 37(15): 1363-6, 2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-26940857

RESUMO

The open edge reconstruction of half-saturated (6,0) zigzag carbon nanotube (CNT) was introduced by density functional calculations. The multistep rearrangement was demonstrated as a regioselective process to generate a defective edge with alternating pentagons and heptagons. Not only the thermal stability was found to be enhanced significantly after reconstruction but also the total spin of CNT was proved to be reduced gradually from high-spin septet to close-shell singlet, revealing the critical role of deformed edge on the geometrical and magnetic properties of open-ended CNTs. Kinetically, the initial transformation was confirmed as the rate-determining step with relatively the largest reaction barrier and the following steps can take place spontaneously. © 2016 Wiley Periodicals, Inc.

16.
Inorg Chem ; 55(14): 6827-9, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27385462

RESUMO

We report a computational work on the electronic structure and derivatization of (#1911)C64. By means of computations based on density functional theory, we find that (#1911)C64 in states of closed-shell singlet (CS), open-shell singlet (OS), and triplet are iso-energetic with an energy difference less than 0.1 kcal mol(-1). The regioselective chlorine additions on CS, OS, and triplet C64 are studied, and the formation of experimentally observed C64Cl4 and C64Cl8 have been successfully elucidated for the first time. In addition, the dechlorination processes of formed chlorofullerenes are also explored. In contrast to the radical Cl addition, the reverse reaction is a themolysis process, and the decomposition sequence is proved to be simply determined by the C-Cl bond length.

17.
Inorg Chem ; 55(4): 1720-7, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26814683

RESUMO

Phosphorescent dinuclear iridium(III) complexes that can show high luminescent efficiencies and good electroluminescent abilities are very rare. In this paper, highly phosphorescent 2-phenylpyrimidine-based dinuclear iridium(III) complexes have been synthesized and fully characterized. Significant differences of the photophysical and electrochemical properties between the mono- and dinuclear complexes are observed. The theoretical calculation results show that the dinuclear complexes adopt a unique molecular orbital spatial distribution pattern, which plays the key role of determining their photophysical and electrochemical properties. More importantly, the solution-processed organic light-emitting diode (OLED) based on the new dinuclear iridium(III) complex achieves a peak external quantum efficiency (η(ext)) of 14.4%, which is the highest η(ext) for OLEDs using dinuclear iridium(III) complexes as emitters. Besides, the efficiencies of the OLED based on the dinuclear iridium(III) complex are much higher that those of the OLED based on the corresponding mononuclear iridium(III) complex.

18.
Phys Chem Chem Phys ; 18(14): 9709-14, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26996891

RESUMO

Recently, two unconventional singly bonded monoadducts of mixed-metal nitride clusterfullerene TiSc2N@Ih-C80 have been synthesized. Herein, the site-selectivity and kinetic processes of Bingel-Hirsch reactions are explored by density functional theory calculations. Because of the rotation of the inner TiSc2N unit, two different types of singly bonded monoadducts (named 666 and 566 adducts) are clarified. Meanwhile, the two functionalized sites are situated above the Ti-Sc edge of the inner cluster in singly bonded adducts. Addition on the triple-fused-hexagon site (6-6-6 site) is found to be kinetically preferred, which can be attributed to the more positive charge of the carbon in the 6-6-6 site. In addition, we investigated the formation process of two conventional cycloadducts. A preference for the addition on the bridged hexagon-hexagon bond is concluded in theory, furthermore, one Sc atom instead of the Ti atom is pointing to the functionalized bond for the lowest-energy orientational product.

19.
J Comput Chem ; 36(8): 518-28, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25594162

RESUMO

A series of photoresponsive-group-containing nanorings hosts with 12∼14 Šin diameter is designed by introducing different number of azo groups as the structural composition units. And the host-guest interactions between fullerene C60 and those nanoring hosts were investigated theoretically at M06-2X/6-31G(d)//M06-L/MIDI! and wB97X-D/6-31G(d) levels. Analysis on geometrical characteristics and host-guest binding energies revealed that the designed nanoring molecule (labeled as 7) which is composed by seven azo groups and seven phenyls is the most feasible host for encapsulation of C60 guest among all candidates. Moreover, inferring from the simulated UV-vis-NIR spectroscopy, the C60 guest could be facilely released from the cavity of the host 7 via configuration transformation between trans-form and cis-form of the host under the 563 nm photoirradiation. Additionally, the frontier orbital features, weak interaction regions, infrared, and NMR spectra of the C60@7 host-guest complex have also been investigated theoretically.

20.
Chemphyschem ; 16(2): 390-5, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25399745

RESUMO

The activation of oxygen molecules on boron-doped C60 fullerene (C59 B) and the subsequent water formation reaction are systematically investigated by using hybrid density functional calculations. Results indicate that C59 B shows a favorable ability to activate oxygen molecules both kinetically and thermodynamically. The oxygen molecule is first adsorbed on the boron atom, which is identified to be the most reactive site in C59 B for O2 adsorption because of its high positive charge and spin density. The adsorption structure C59 BO2 can further isomerize to form two products with small reaction barriers. Water formation reactions upon these two structures are energetically favorable and suggest a four-electron mechanism for the oxygen reduction reaction catalyzed by C59 B. This work provides a reliable theoretical insight into the catalytic properties of boron-doped fullerene, which is believed to be helpful to explore fullerene catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA